Abstract

We demonstrate an all-optical half adder for bit-wise addition of two serial data streams that simultaneously generates Sum and Carry outputs. The module performs the required XOR and AND operations using only two nonlinear optical elements. Difference Frequency Generation in a periodically poled lithium niobate waveguide serves as the AND gate and cross-gain modulation in a semiconductor optical amplifier is employed to generate the XOR output. Error free operation for RZ data is reported.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Awad, P. Cho, P., and J. Goldhar, "High-speed all-optical AND gate using nonlinear transmission of electroabsorption modulator," IEEE Photon. Technol. Lett. 13, 472-474 (2001).
    [CrossRef]
  2. R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
    [CrossRef]
  3. B. S. Robinson, S. A. Hamilton, S. J. Savage, and E. P. Ippen, "40 Gbit/s all-optical XOR using a fiber-based folded ultrafast nonlinear interferometer," in Conference on Optical Fiber Communications (OFC) 2002, pp. 561-563.
  4. G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, "40 GHz all-optical XOR with UNI gate," in Conference on Optical Fiber Communications (OFC) 2001, pp. MB2-1-MB2-3.
  5. A. Poustie, R. J. Manning, and A. E. Kelly, and K. J. Blow, "All-optical binary counter," Opt. Express 6, 69-74 (2000).
    [CrossRef] [PubMed]
  6. M. Nielsen, M. Petersen, M. Nord, and B. Dagens, "Compact all-optical parity calculator based on a single all-active Mach Zehnder interferometer with all-SOA amplified feedback," in Conference on Optical Fiber Communications (OFC) 2003, pp. 274-275.
  7. C. Jiao, and L. Schwiebert, "Error masking probability of 1's complement checksums," in 10th Int. Conference on Computer Communications and Networks 2001, pp. 505-510.
  8. S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, "All-optical binary half adder using SLALOMs," in Conference on Lasers and Electro-Optics (CLEO/Pacific Rim) 2001, pp. 254-255.
  9. A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
    [CrossRef]
  10. J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
    [CrossRef]
  11. D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
    [CrossRef]
  12. I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. Kurz, and M. M. Fejer, "Parametric wavelength conversion and phase conjugation in LiNbO3 waveguides," in Annual Meeting of IEEE LEOS 2000, pp. 766-767.
  13. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
    [CrossRef]
  14. G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2652-2654 (2005).
    [CrossRef]
  15. C. C. Wei, M. F. Huang, and J. Chen, "Enhancing the frequency response of cross-polarization wavelength conversion," IEEE Photon. Technol. Lett. 17, 1683-1685 (2005).
    [CrossRef]
  16. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, H. J. S. Dorren, X. Shu, and I. Bennion, "Error-free 320 Gb/s SOA-based Wavelength Conversion using Optical Filtering," in Conference on Optical Fiber Communications (OFC) 2006, paper PDP28.

2005 (2)

G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2652-2654 (2005).
[CrossRef]

C. C. Wei, M. F. Huang, and J. Chen, "Enhancing the frequency response of cross-polarization wavelength conversion," IEEE Photon. Technol. Lett. 17, 1683-1685 (2005).
[CrossRef]

2004 (1)

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

2003 (2)

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

2001 (1)

E. S. Awad, P. Cho, P., and J. Goldhar, "High-speed all-optical AND gate using nonlinear transmission of electroabsorption modulator," IEEE Photon. Technol. Lett. 13, 472-474 (2001).
[CrossRef]

2000 (1)

1998 (1)

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

1996 (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Avramopoulos, H.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Awad, E. S.

E. S. Awad, P. Cho, P., and J. Goldhar, "High-speed all-optical AND gate using nonlinear transmission of electroabsorption modulator," IEEE Photon. Technol. Lett. 13, 472-474 (2001).
[CrossRef]

Blow, K. J.

A. Poustie, R. J. Manning, and A. E. Kelly, and K. J. Blow, "All-optical binary counter," Opt. Express 6, 69-74 (2000).
[CrossRef] [PubMed]

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

Byun, Y. T.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
[CrossRef]

Calabretta, N.

G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2652-2654 (2005).
[CrossRef]

Chen, J.

C. C. Wei, M. F. Huang, and J. Chen, "Enhancing the frequency response of cross-polarization wavelength conversion," IEEE Photon. Technol. Lett. 17, 1683-1685 (2005).
[CrossRef]

Cho, P.

E. S. Awad, P. Cho, P., and J. Goldhar, "High-speed all-optical AND gate using nonlinear transmission of electroabsorption modulator," IEEE Photon. Technol. Lett. 13, 472-474 (2001).
[CrossRef]

Ciaramella, E.

G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2652-2654 (2005).
[CrossRef]

Contestabile, G.

G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2652-2654 (2005).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Guekos, G.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Houbavlis, T.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Huang, M. F.

C. C. Wei, M. F. Huang, and J. Chen, "Enhancing the frequency response of cross-polarization wavelength conversion," IEEE Photon. Technol. Lett. 17, 1683-1685 (2005).
[CrossRef]

Jhon, Y. M.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Kanellos, G. T.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Kehayas, E.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Kelly, A. E.

A. Poustie, R. J. Manning, and A. E. Kelly, and K. J. Blow, "All-optical binary counter," Opt. Express 6, 69-74 (2000).
[CrossRef] [PubMed]

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

Kim, J. H.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
[CrossRef]

Kim, S. H.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
[CrossRef]

Lee, S.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
[CrossRef]

Lykke Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Manning, R. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

A. Poustie, R. J. Manning, and A. E. Kelly, and K. J. Blow, "All-optical binary counter," Opt. Express 6, 69-74 (2000).
[CrossRef] [PubMed]

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

Maxwell, G. D.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Pleros, N.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Poustie, A.

Poustie, A. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

Presi, M.

G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2652-2654 (2005).
[CrossRef]

Stampoulidis, L.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Tsiokos, D.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Vyrsokinos, K.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

Webb, R. P.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Wei, C. C.

C. C. Wei, M. F. Huang, and J. Chen, "Enhancing the frequency response of cross-polarization wavelength conversion," IEEE Photon. Technol. Lett. 17, 1683-1685 (2005).
[CrossRef]

Woo, D. H.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
[CrossRef]

Electron. Lett. (1)

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electron. Lett. 39, 79-81 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

E. S. Awad, P. Cho, P., and J. Goldhar, "High-speed all-optical AND gate using nonlinear transmission of electroabsorption modulator," IEEE Photon. Technol. Lett. 13, 472-474 (2001).
[CrossRef]

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett. 16, 284-286 (2004).
[CrossRef]

G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2652-2654 (2005).
[CrossRef]

C. C. Wei, M. F. Huang, and J. Chen, "Enhancing the frequency response of cross-polarization wavelength conversion," IEEE Photon. Technol. Lett. 17, 1683-1685 (2005).
[CrossRef]

J. Lightwave Technol. (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Opt. Commun. (2)

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using semiconductor optical amplifier based devices," Opt. Commun. 218, 345-349 (2003).
[CrossRef]

Opt. Express (1)

Other (7)

B. S. Robinson, S. A. Hamilton, S. J. Savage, and E. P. Ippen, "40 Gbit/s all-optical XOR using a fiber-based folded ultrafast nonlinear interferometer," in Conference on Optical Fiber Communications (OFC) 2002, pp. 561-563.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, "40 GHz all-optical XOR with UNI gate," in Conference on Optical Fiber Communications (OFC) 2001, pp. MB2-1-MB2-3.

M. Nielsen, M. Petersen, M. Nord, and B. Dagens, "Compact all-optical parity calculator based on a single all-active Mach Zehnder interferometer with all-SOA amplified feedback," in Conference on Optical Fiber Communications (OFC) 2003, pp. 274-275.

C. Jiao, and L. Schwiebert, "Error masking probability of 1's complement checksums," in 10th Int. Conference on Computer Communications and Networks 2001, pp. 505-510.

S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, "All-optical binary half adder using SLALOMs," in Conference on Lasers and Electro-Optics (CLEO/Pacific Rim) 2001, pp. 254-255.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, H. J. S. Dorren, X. Shu, and I. Bennion, "Error-free 320 Gb/s SOA-based Wavelength Conversion using Optical Filtering," in Conference on Optical Fiber Communications (OFC) 2006, paper PDP28.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. Kurz, and M. M. Fejer, "Parametric wavelength conversion and phase conjugation in LiNbO3 waveguides," in Annual Meeting of IEEE LEOS 2000, pp. 766-767.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Logic diagram and truth table for a half adder. The Carry output is ‘on’ only when both the inputs (A and B) are ‘on’ corresponding to the AND operation between A and B. The Sum output is ‘on’ if and only if one of the two inputs is ‘on’. This is equivalent to the XOR operation between A and B.

Fig. 2.
Fig. 2.

(a). XOR-less equivalent circuit for the half adder. (b). Optical schematic for the half adder. A PPLN waveguide performs the AND operation while the SOA simulates the NOT and AND gates operating together to generate the XOR output.

Fig. 3.
Fig. 3.

Signal propagation through the half adder module. The two inputs are coupled into the PPLN waveguide and the Carry signal is generated at a new wavelength through the DFG process. The Carry signal is amplified and injected into the SOA as a pump signal. Whenever the Carry is ‘on’, it squelches the SOA’s gain and the corresponding input pulses passing through the SOA are suppressed. Only those pulses, which do not have a corresponding Carry pulse, emerge at the SOA output. This is equivalent to an XOR operation and generates the SUM output.

Fig. 4.
Fig. 4.

Experimental setup for the all-optical half adder. The PPLN waveguide acts as an AND gate to generate the Carry output. The Carry output saturates the SOA’s gain preventing the corresponding input pulses on λ1 & λ2 from emerging at the Sum output port, thereby imitating an XOR gate.

Fig. 5.
Fig. 5.

(a). Output spectrum of the PPLN waveguide. Signal on λ2=1548.53 nm is converted to λc=1551.76 nm when the signal on λ1=1550.15 nm is high (logic 1). This is equivalent to an AND operation between the signals on λ1 & λ2. (b) The converted signal is filtered and amplified forming the Carry output and is also injected into the SOA as a high power pump.

Fig. 6.
Fig. 6.

(a). Spectrum of the input to the SOA. The coupler’s output contains pulses on λ1=1550.15 nm and λ2=1548.53 nm that are injected into the SOA. A reservoir CW channel, λcw=1539 nm optically biases the SOA into saturation. (b) SOA output (Sum) spectrum after filtering at circulator’s port 3. The Sum is comprised of pulses on λ1 and λ2 which are filtered together using a 1.4 nm bandpass filter centered between λ1 and λ2.

Fig. 7.
Fig. 7.

(a). 5 Gb/s RZ bit patterns for the half adder. The Carry output is ‘on’ only when both the inputs are ‘on. Pulses on λ12) emerge at the SOA output only if they do not have a corresponding pulse on λ21). These two wavelengths are filtered together to obtain the Sum output. (b) BER measurements for the half adder. The Carry output exhibits <1 dB power penalty while the Sum output on a single wavelength shows <2 dB penalty. The excess penalty of the combined Sum output is due to unfiltered ASE noise.

Metrics