Abstract

This paper presents an all-fiber design of a quasi-distributed polarimetric temperature sensor array that utilizes commercially available single polarization and high birefringence fibers. The modulation depth of temperature induced loss and the operational temperature range of individual sensors in the network are set by the rotational alignment of fibers before fusion splicing and through fine adjustment of the sensing fiber lengths. A practical sensor network was built with sensors that operated in the temperature range from 0 to 100 C. Individual sensors in the network generated temperature dependent loss that changed proportionally from 0.9 to 1.8 dB. With current standard telecommunication OTDRs, more than 20 prototype sensors could be interrogated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30, 1276–1278 (2005).
    [CrossRef] [PubMed]
  2. M. A. Farahani and T. Gogolla, “Spontaneous Raman Scattering in Optical Fibers with Modulated Probe Light for Distributed Temperature Raman Remote Sensing,” J. Lightwave Technol. 17, 1379–1391 (1999).
    [CrossRef]
  3. K. De Souza and T. P. Newson, “Brillouin-based fiber-optic distributed temperature sensor with optical preamplification,” Opt. Lett. 25, 1331–1333 (2000).
    [CrossRef]
  4. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
    [CrossRef] [PubMed]
  5. V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
    [CrossRef]
  6. M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett. 26, 58–60 (2001).
    [CrossRef]
  7. R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh back scattering in an optical fiber,” Opt. Lett. 19, 593–595 (1994).
    [CrossRef] [PubMed]
  8. A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeLaRosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
    [CrossRef]
  9. E. DeLaRosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
    [CrossRef]
  10. D. Monzon-Hernandez, J. Mora, P. Perez-Millan, A. Diez, J. L. Cruz, and M. V. Andres, “Temperature sensor based on the power reflected by a Bragg grating in a tapered fiber,” Appl. Opt. 43, 2393–2396 (2004)
    [CrossRef] [PubMed]
  11. D. J. F. Cooper, T. Coroy, and P. W. E. Smith, “Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays,” Appl. Opt. 40, 2643–2654 (2001).
    [CrossRef]
  12. Y. G. Zhan, H. W. Cai, R. H. Qu, S. Q. Xiang, Z. J. Fang, and X. Z. Wang, “Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution,” Opt. Eng. 43, 2358–2361 (2004).
    [CrossRef]
  13. W. H. Tsai and C. J. Lin “A Novel Structure for the Intrinsic Fabry-Perot Fiber-Optics Temperature Sensor” J. Lightwave Technol. 19, 682–686 (2001).
    [CrossRef]
  14. C. E. Lee, R. A. Atkins, and H. F. Taylor, “Performer of a fiber-optics temperature sensor from -200 to 1050°C,” Opt. Lett. 13, 1038–1040 (1988).
    [CrossRef] [PubMed]
  15. C. E. Lee and H. F. Taylor, “Optical-fiber Fabry-Perot embedded sensor,” Opt. Lett. 14, 1225–1227 (1989).
    [CrossRef] [PubMed]
  16. F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32, 2213–2218 (1993).
    [CrossRef] [PubMed]
  17. M. Završnik, D. Donlagić, and D. Donlagić, “Polarimetric temperature sensor: extinction ratio and sensing lenght examination,” Opt. Eng. 36, 3200–3205 (1997).
    [CrossRef]
  18. Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27, 903–905 (2002).
    [CrossRef]
  19. W. J. Bock and W. Urbanczyk, “Coherence Multiplexing of Fiber-Optics Pressure and Temperature Sensor Based on Highly Birefringent Fibers,” IEEE Trans. Instrum. Meas. 49, 392–397 (2000).
    [CrossRef]
  20. Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30, 711–713 (2005).
    [CrossRef] [PubMed]
  21. R. C. Gauthier, “Analysis of birefringent sensor’s dependence on the blocking properties of linear polarizers and the input laser beam’s polarization state,” Appl. Opt. 35, 6271–6277 (1996).
    [CrossRef] [PubMed]
  22. O. Wallner, W.R. Leeb, and P.J. Winzer, “Minimum length of a single-mode fiber spatial filter,” J. Opt. Soc. Am. A. 19, 2445–2448 (2002)
    [CrossRef]
  23. D. A. Nolan, G. E. Berkey, M. Li, X. Chen, W. A. Wood, and L. A. Zenteno, “Single-polarization fiber with a high extinction ratio,” Opt. Lett. 29, 1855–1857 (2004).
    [CrossRef] [PubMed]
  24. http://www.corning.com/photonicmaterials/pdf/PI203_Corning%20Single%20Polarization_4-2005.pdf
  25. R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape”, Electron. Lett. 27, 1654–1656 (1991).
    [CrossRef]
  26. T. A. Birks and Y. W. Li “The Shape of Fiber Tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]

2005 (2)

2004 (3)

2002 (2)

O. Wallner, W.R. Leeb, and P.J. Winzer, “Minimum length of a single-mode fiber spatial filter,” J. Opt. Soc. Am. A. 19, 2445–2448 (2002)
[CrossRef]

Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27, 903–905 (2002).
[CrossRef]

2001 (3)

2000 (3)

K. De Souza and T. P. Newson, “Brillouin-based fiber-optic distributed temperature sensor with optical preamplification,” Opt. Lett. 25, 1331–1333 (2000).
[CrossRef]

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

W. J. Bock and W. Urbanczyk, “Coherence Multiplexing of Fiber-Optics Pressure and Temperature Sensor Based on Highly Birefringent Fibers,” IEEE Trans. Instrum. Meas. 49, 392–397 (2000).
[CrossRef]

1999 (1)

1997 (3)

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeLaRosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

E. DeLaRosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

M. Završnik, D. Donlagić, and D. Donlagić, “Polarimetric temperature sensor: extinction ratio and sensing lenght examination,” Opt. Eng. 36, 3200–3205 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

1992 (1)

T. A. Birks and Y. W. Li “The Shape of Fiber Tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1991 (1)

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape”, Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

1990 (1)

1989 (1)

1988 (1)

Alahbabi, M. N.

Andres, M. V.

Atkins, R. A.

Berkey, G. E.

Birks, T. A.

T. A. Birks and Y. W. Li “The Shape of Fiber Tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape”, Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

Bock, W. J.

W. J. Bock and W. Urbanczyk, “Coherence Multiplexing of Fiber-Optics Pressure and Temperature Sensor Based on Highly Birefringent Fibers,” IEEE Trans. Instrum. Meas. 49, 392–397 (2000).
[CrossRef]

Cai, H. W.

Y. G. Zhan, H. W. Cai, R. H. Qu, S. Q. Xiang, Z. J. Fang, and X. Z. Wang, “Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution,” Opt. Eng. 43, 2358–2361 (2004).
[CrossRef]

Chen, X.

Chen, Y.

Cho, Y. T.

Cooper, D. J. F.

Coroy, T.

Cruz, J. L.

DeLaRosa, E.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeLaRosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

E. DeLaRosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

Diez, A.

Donlagic, D.

M. Završnik, D. Donlagić, and D. Donlagić, “Polarimetric temperature sensor: extinction ratio and sensing lenght examination,” Opt. Eng. 36, 3200–3205 (1997).
[CrossRef]

M. Završnik, D. Donlagić, and D. Donlagić, “Polarimetric temperature sensor: extinction ratio and sensing lenght examination,” Opt. Eng. 36, 3200–3205 (1997).
[CrossRef]

Fang, Z. J.

Y. G. Zhan, H. W. Cai, R. H. Qu, S. Q. Xiang, Z. J. Fang, and X. Z. Wang, “Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution,” Opt. Eng. 43, 2358–2361 (2004).
[CrossRef]

Farahani, M. A.

Gauthier, R. C.

Gogolla, T.

Hathaway, M. W.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

Horiguchi, T.

Huang, Z.

Jackson, D. A.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh back scattering in an optical fiber,” Opt. Lett. 19, 593–595 (1994).
[CrossRef] [PubMed]

Johnson, G. A.

Kenny, R. P.

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape”, Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

Kurashima, T.

Lecoeuche, V.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

Lee, C. E.

Leeb, W.R.

O. Wallner, W.R. Leeb, and P.J. Winzer, “Minimum length of a single-mode fiber spatial filter,” J. Opt. Soc. Am. A. 19, 2445–2448 (2002)
[CrossRef]

Li, M.

Li, Y. W.

T. A. Birks and Y. W. Li “The Shape of Fiber Tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Lin, C. J.

Lit, J. W. Y.

Mermelstein, M. D.

Monzon, D.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeLaRosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

E. DeLaRosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

Monzon-Hernandez, D.

Mora, J.

Newson, T. P.

Nolan, D. A.

Oakley, K. P.

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape”, Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

Pannell, C. N.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

Pechstedt, R. D.

Perez-Millan, P.

Posey, R.

Qu, R. H.

Y. G. Zhan, H. W. Cai, R. H. Qu, S. Q. Xiang, Z. J. Fang, and X. Z. Wang, “Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution,” Opt. Eng. 43, 2358–2361 (2004).
[CrossRef]

Rathod, R.

Shen, F.

Smith, P. W. E.

Souza, K. De

Starodumov, A. N.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeLaRosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

E. DeLaRosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

Tateda, M.

Taylor, H. F.

Tsai, W. H.

Urbanczyk, W.

W. J. Bock and W. Urbanczyk, “Coherence Multiplexing of Fiber-Optics Pressure and Temperature Sensor Based on Highly Birefringent Fibers,” IEEE Trans. Instrum. Meas. 49, 392–397 (2000).
[CrossRef]

Vohra, S. T.

Wallner, O.

O. Wallner, W.R. Leeb, and P.J. Winzer, “Minimum length of a single-mode fiber spatial filter,” J. Opt. Soc. Am. A. 19, 2445–2448 (2002)
[CrossRef]

Wang, A.

Wang, X. Z.

Y. G. Zhan, H. W. Cai, R. H. Qu, S. Q. Xiang, Z. J. Fang, and X. Z. Wang, “Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution,” Opt. Eng. 43, 2358–2361 (2004).
[CrossRef]

Webb, D. J.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh back scattering in an optical fiber,” Opt. Lett. 19, 593–595 (1994).
[CrossRef] [PubMed]

Winzer, P.J.

O. Wallner, W.R. Leeb, and P.J. Winzer, “Minimum length of a single-mode fiber spatial filter,” J. Opt. Soc. Am. A. 19, 2445–2448 (2002)
[CrossRef]

Wood, W. A.

Xiang, S. Q.

Y. G. Zhan, H. W. Cai, R. H. Qu, S. Q. Xiang, Z. J. Fang, and X. Z. Wang, “Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution,” Opt. Eng. 43, 2358–2361 (2004).
[CrossRef]

Završnik, M.

M. Završnik, D. Donlagić, and D. Donlagić, “Polarimetric temperature sensor: extinction ratio and sensing lenght examination,” Opt. Eng. 36, 3200–3205 (1997).
[CrossRef]

Zenteno, L. A.

Zhan, Y. G.

Y. G. Zhan, H. W. Cai, R. H. Qu, S. Q. Xiang, Z. J. Fang, and X. Z. Wang, “Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution,” Opt. Eng. 43, 2358–2361 (2004).
[CrossRef]

Zhang, F.

Zhu, Y.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeLaRosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

Electron. Lett. (1)

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape”, Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

W. J. Bock and W. Urbanczyk, “Coherence Multiplexing of Fiber-Optics Pressure and Temperature Sensor Based on Highly Birefringent Fibers,” IEEE Trans. Instrum. Meas. 49, 392–397 (2000).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A. (1)

O. Wallner, W.R. Leeb, and P.J. Winzer, “Minimum length of a single-mode fiber spatial filter,” J. Opt. Soc. Am. A. 19, 2445–2448 (2002)
[CrossRef]

Opt. Eng. (2)

M. Završnik, D. Donlagić, and D. Donlagić, “Polarimetric temperature sensor: extinction ratio and sensing lenght examination,” Opt. Eng. 36, 3200–3205 (1997).
[CrossRef]

Y. G. Zhan, H. W. Cai, R. H. Qu, S. Q. Xiang, Z. J. Fang, and X. Z. Wang, “Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution,” Opt. Eng. 43, 2358–2361 (2004).
[CrossRef]

Opt. Lett. (11)

E. DeLaRosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481–483 (1997).
[CrossRef]

K. De Souza and T. P. Newson, “Brillouin-based fiber-optic distributed temperature sensor with optical preamplification,” Opt. Lett. 25, 1331–1333 (2000).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef] [PubMed]

M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett. 26, 58–60 (2001).
[CrossRef]

R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh back scattering in an optical fiber,” Opt. Lett. 19, 593–595 (1994).
[CrossRef] [PubMed]

Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett. 27, 903–905 (2002).
[CrossRef]

C. E. Lee, R. A. Atkins, and H. F. Taylor, “Performer of a fiber-optics temperature sensor from -200 to 1050°C,” Opt. Lett. 13, 1038–1040 (1988).
[CrossRef] [PubMed]

C. E. Lee and H. F. Taylor, “Optical-fiber Fabry-Perot embedded sensor,” Opt. Lett. 14, 1225–1227 (1989).
[CrossRef] [PubMed]

D. A. Nolan, G. E. Berkey, M. Li, X. Chen, W. A. Wood, and L. A. Zenteno, “Single-polarization fiber with a high extinction ratio,” Opt. Lett. 29, 1855–1857 (2004).
[CrossRef] [PubMed]

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30, 711–713 (2005).
[CrossRef] [PubMed]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30, 1276–1278 (2005).
[CrossRef] [PubMed]

Other (1)

http://www.corning.com/photonicmaterials/pdf/PI203_Corning%20Single%20Polarization_4-2005.pdf

Supplementary Material (1)

» Media 1: MPG (1602 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Quasi distributed sensor array

Fig. 2.
Fig. 2.

Structure of the individual sensor segment

Fig. 3.
Fig. 3.

Typical transmission temperature characteristics of the sensor segment after successful splicing

Fig. 4.
Fig. 4.

Tuning of the sensor

Fig. 5.
Fig. 5.

(Movie 1,56MB) OTDR response of three sensors at different temperatures.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δϕ = k L sens Δ T
L sens = π k Δ T max
I out = I 0 [ 1 4 ( 2 + cos [ 2 ( Φ 1 Φ 2 ) ] + cos [ 2 ( Φ 1 + Φ 2 ) ] 2 cos ϕ sin [ 2 Φ 1 ] sin [ 2 Φ 2 ] ) ]
I extrem = I 0 [ 1 4 ( 2 + cos [ 2 ( Φ 1 Φ 2 ) ] + cos [ 2 ( Φ 1 + Φ 2 ) ] 2 sin [ 2 Φ 1 ] sin [ 2 Φ 2 ] ) ]
Φ 1 = ± Φ 2 + ; k = 0 , ± 1 , ± 2 ,
I out = I 0 [ 1 4 ( 3 + cos [ 4 Φ ] 2 cos [ ϕ ] sin 2 [ 2 Φ ] ) ]
I out = I 0 [ 1 4 ( 3 + cos [ 4 Φ ] 2 cos [ ϕ ] sin 2 [ 2 Φ ] ) ]
mod [ dB ] = 10 Log [ cos 2 [ 2 Φ ] ]
Φ 1 = ± Φ 2 = 1 2 arccos 10 mod [ dB ] 10
Δ l cor = B L 2 π Δ φ
sensor resolution = temperature range * ( OTDR resolution ) / ( sensor mod ulation depth )
Sensor sensitivity = sensor mod ulation depth / ( temperature range )
1 / 2 * beath lenght * ( max imum initial offset / temperature range )

Metrics