Abstract

We use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine. The waveguide layer based on BCB optical polymer is fabricated by conventional optical lithography. This approach provides processing simplicity to fabricate Bragg grating filters.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low loss high index contrast nanoimprinted polysiloxane waveguides

Ting Han, Steve Madden, Mathew Zhang, Robbie Charters, and Barry Luther-Davies
Opt. Express 17(4) 2623-2630 (2009)

Fabrication of high-resolution periodical structures on polymer waveguides using a replication process

Wei-Ching Chuang, Ching-Kong Chao, and Chi-Ting Ho
Opt. Express 15(14) 8649-8659 (2007)

High-refractive-index measurement with an elastomeric grating coupler

Askin Kocabas, Feridun Ay, Aykutlu Dâna, Isa Kiyat, and Atilla Aydinli
Opt. Lett. 30(23) 3150-3152 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science. 272,85–87 (1996).
    [Crossref]
  2. A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
    [Crossref]
  3. Y. Xia and G. M. Whitesides, “Soft lithography,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
  4. L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
    [Crossref]
  5. Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
    [Crossref]
  6. G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
    [Crossref]
  7. A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595–2597 (2005).
    [Crossref]
  8. W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filter using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576–3578 (2001).
    [Crossref]
  9. L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
    [Crossref]
  10. S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, “Polymeric waveguide filter based on Bragg grating nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
    [Crossref]
  11. T. W. Odom, J. C. Love, D. W. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern trancfer in soft lithography using composite stamp” Langmuir. 18, 5314–5320 (2002).
    [Crossref]
  12. V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
    [Crossref]
  13. L. Zhu, Y. Huang, W. Green, and A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by direct electron beam writing,” Opt. Express 12, 6372–6376 (2004).
    [Crossref] [PubMed]

2005 (3)

Y. Xia and G. M. Whitesides, “Soft lithography,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595–2597 (2005).
[Crossref]

S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, “Polymeric waveguide filter based on Bragg grating nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
[Crossref]

2004 (3)

L. Zhu, Y. Huang, W. Green, and A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by direct electron beam writing,” Opt. Express 12, 6372–6376 (2004).
[Crossref] [PubMed]

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
[Crossref]

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

2002 (1)

T. W. Odom, J. C. Love, D. W. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern trancfer in soft lithography using composite stamp” Langmuir. 18, 5314–5320 (2002).
[Crossref]

2001 (1)

W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filter using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576–3578 (2001).
[Crossref]

1999 (1)

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

1998 (1)

L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science. 272,85–87 (1996).
[Crossref]

1995 (1)

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
[Crossref]

1993 (1)

A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
[Crossref]

Ahn, S. W.

S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, “Polymeric waveguide filter based on Bragg grating nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
[Crossref]

Blomquist, R. B.

L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Cappuzzo, M. A.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science. 272,85–87 (1996).
[Crossref]

Dalton, L. R.

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
[Crossref]

Damask, J. N.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
[Crossref]

Dodabalapur, A.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Eldada, L.

L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Ferrera, J.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
[Crossref]

Glass, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Green, W.

Haus, H. A.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
[Crossref]

Huang, Y.

L. Zhu, Y. Huang, W. Green, and A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by direct electron beam writing,” Opt. Express 12, 6372–6376 (2004).
[Crossref] [PubMed]

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
[Crossref]

Jen, A. K. Y.

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Kim, D. H.

S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, “Polymeric waveguide filter based on Bragg grating nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
[Crossref]

Kostovski, G.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595–2597 (2005).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science. 272,85–87 (1996).
[Crossref]

Kumar, A.

A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
[Crossref]

Laskowski, E. J.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Lee, K. D.

S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, “Polymeric waveguide filter based on Bragg grating nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
[Crossref]

Lee, S. S.

S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, “Polymeric waveguide filter based on Bragg grating nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
[Crossref]

Love, J. C.

T. W. Odom, J. C. Love, D. W. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern trancfer in soft lithography using composite stamp” Langmuir. 18, 5314–5320 (2002).
[Crossref]

Luo, J.

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Meier, M.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Mitchell, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595–2597 (2005).
[Crossref]

Murphy, T. E.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
[Crossref]

Norwood, R. A.

L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Odom, T. W.

T. W. Odom, J. C. Love, D. W. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern trancfer in soft lithography using composite stamp” Langmuir. 18, 5314–5320 (2002).
[Crossref]

Paloczi, G. T.

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
[Crossref]

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Paul, K. E.

T. W. Odom, J. C. Love, D. W. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern trancfer in soft lithography using composite stamp” Langmuir. 18, 5314–5320 (2002).
[Crossref]

Perentos, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595–2597 (2005).
[Crossref]

Poga, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Pun, E. Y. B.

W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filter using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576–3578 (2001).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science. 272,85–87 (1996).
[Crossref]

Rogers, L. A.

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

Smith, H. I.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
[Crossref]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

T. W. Odom, J. C. Love, D. W. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern trancfer in soft lithography using composite stamp” Langmuir. 18, 5314–5320 (2002).
[Crossref]

A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
[Crossref]

Wolfe, D. W.

T. W. Odom, J. C. Love, D. W. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern trancfer in soft lithography using composite stamp” Langmuir. 18, 5314–5320 (2002).
[Crossref]

Wong, V. V.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
[Crossref]

Wong, W. H.

W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filter using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576–3578 (2001).
[Crossref]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

Yariv, A.

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
[Crossref]

L. Zhu, Y. Huang, W. Green, and A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by direct electron beam writing,” Opt. Express 12, 6372–6376 (2004).
[Crossref] [PubMed]

Yin, S.

L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Zhang, C.

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
[Crossref]

Zhu, L.

Appl. Phys. Lett. (4)

A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
[Crossref]

L. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[Crossref]

W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filter using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576–3578 (2001).
[Crossref]

G. T. Paloczi, Y. Huang, A. Yariv, J. Luo, and A. K. Y. Jen, “Replica-molded electro-optic polymer Mach-Zehnder modulator,” Appl. Phys. Lett. 85, 1662–1664 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (4)

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595–2597 (2005).
[Crossref]

L. Eldada, S. Yin, C. Poga, C. Glass, R. B. Blomquist, and R. A. Norwood, “Integrated multichanel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, “Polymeric waveguide filter based on Bragg grating nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
[Crossref]

Y. Xia and G. M. Whitesides, “Soft lithography,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

J. Phys. Chem. B (1)

Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108, 8606–8613 (2004).
[Crossref]

J. Vac. Sci. Technol. B (1)

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: Synthesis and fabrication,” J. Vac. Sci. Technol. B 13, 2859–2864 (1995).
[Crossref]

Langmuir. (1)

T. W. Odom, J. C. Love, D. W. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern trancfer in soft lithography using composite stamp” Langmuir. 18, 5314–5320 (2002).
[Crossref]

Opt. Express (1)

Science. (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science. 272,85–87 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram for transferring the grating structure; a) spinning the pre-polymer on the wafer, b) placing the PDMS stamp on pre-polymer layer and exposing with UV light, c) removing the elastomeric stamp from the wafer, d) optical microscope image of the patterned region, e) AFM image of the grating structure, f) SEM image of the grating structure with residual layer indicated.

Fig. 2.
Fig. 2.

Cross-sectional view of the polymeric waveguide Bragg grating filter. The grating structure is on the 7 μm thick thermal oxide, the core of the wave guide is BCB and the upper cladding is PMGI, dimensions are in μm.

Fig. 3.
Fig. 3.

Transmission spectrum of the waveguide grating filter a) TM polarization, n eff =1.515 and Δn=0.002 from fitting results b) TE polarization, n eff =1.517 and Δn=0.002 from fitting results.

Metrics