Abstract

The first application of a microlens array beam homogenizer to planar laser measurement techniques in combustion diagnostics is demonstrated. The beam homogenizing properties of two microlens arrays in combination with a Fourier lens for widespread applications are presented. An uniform line profile with very little temporal fluctuations of the spatial intensity distribution was generated resulting in a significant reduction of measurement noise and enabling an easier and faster signal processing.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet

Benjamin R. Halls, Daniel J. Thul, Dirk Michaelis, Sukesh Roy, Terrence R. Meyer, and James R. Gord
Opt. Express 24(9) 10040-10049 (2016)

Freeform microlens array homogenizer for excimer laser beam shaping

Yuhua Jin, Ali Hassan, and Yijian Jiang
Opt. Express 24(22) 24846-24858 (2016)

Laser-induced incandescence measurements of soot in turbulent pool fires

Kraig Frederickson, Sean P. Kearney, and Thomas W. Grasser
Appl. Opt. 50(4) A49-A59 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 76–121 (2005).
    [Crossref]
  2. S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, “Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering,” Appl. Opt. 32, 6167–6172 (1993).
    [Crossref] [PubMed]
  3. S. Will, S. Schraml, and A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [Crossref] [PubMed]
  4. A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, “Simultaneous application of single-shot Ramanography and particle image velocimetry,” Opt. Lett. 31, 1005–1007 (2006).
    [Crossref] [PubMed]
  5. J. W. Daily, “Laser Induced Fluorescence Spectroscopy in Flames,” Prog. Energy Combust. Sci. 23, 133–199 (1997).
    [Crossref]
  6. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Tunbrigde Wells, Kent, UK, 1988).
  7. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–280 (1994).
    [Crossref]
  8. M. Marrocco, “Spatial laser-wing suppression in saturated laser-induced fluorescence without spatial selection,” Opt. Lett. 28, 2016–2018 (2003).
    [Crossref] [PubMed]
  9. M. Schäfer, W. Ketterle, and J. Wolfrum, “Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames,” Appl. Phys. B 52, 341–346 (1991).
    [Crossref]
  10. S. Will, S. Schraml, K. Bader, and A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
    [Crossref]
  11. H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 5577–5590 (2003).
    [Crossref] [PubMed]
  12. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [Crossref] [PubMed]
  13. J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, “Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays,” Opt. Express 10, 309–323 (2002).
    [PubMed]
  14. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation,” Appl. Phys. B 71, 717–723 (2000).
    [Crossref]
  15. X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986).
    [Crossref] [PubMed]
  16. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
    [Crossref]
  17. K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
    [Crossref]
  18. A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982–4989 (2006).
    [Crossref] [PubMed]
  19. N. Streibl, U. Nölscher, J. Jahns, and S. Walker, “Array generation with lenslet arrays,” Appl. Opt. 30, 2739–2742 (1991).
    [Crossref] [PubMed]
  20. F. M. Dickey, S. C. Holswade, and D. Shealy, Laser Beam Shaping Applications (CRC Press, 2005).
    [Crossref]
  21. S. Pfadler, M. Löffler, F. Dinkelacker, F. Beyrau, and A. Leipertz, “Simultaneous Two-Dimensional Determination of Mixture Fraction and Flow-Velocity in a Non-Reacting Free Jet Flow by Planar LIF and PIV,” in 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Lisbon, 2006), paper 18–11.
  22. P. H. Paul, “The application of intensified array detectors to quantitative planar laser induced fluorescence imaging,” in 27th Joint Propulsion Conference(AIAA, Sacramento, California, 1991).
  23. S. Roy, G. Ray, and R. P. Lucht, “Interline transfer CCD camera for gated broadband coherent anti-Stokes Raman-scattering measurements,” Appl. Opt. 40, 6005–6011 (2001).
    [Crossref]
  24. J. H. Frank, S. A. Kaiser, and M. B. Long, “Reaction-Rate, Mixture-Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
    [Crossref]
  25. S. A. Kaiser, J. H. Frank, and M. B. Long, “Use of Rayleigh imaging and ray tracing to correct for beam-steering effects in turbulent flames,” Appl. Opt. 44, 6557–6564 (2005).
    [Crossref] [PubMed]
  26. R. Stevens and P. Ewart, “Simultaneous single-shot measurement of temperature and pressure along a one-dimensional line by use of laser-induced thermal grating spectroscopy,” Opt. Lett. 31, 1055–1057 (2006).
    [Crossref] [PubMed]

2006 (3)

2005 (2)

S. A. Kaiser, J. H. Frank, and M. B. Long, “Use of Rayleigh imaging and ray tracing to correct for beam-steering effects in turbulent flames,” Appl. Opt. 44, 6557–6564 (2005).
[Crossref] [PubMed]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 76–121 (2005).
[Crossref]

2003 (2)

2002 (2)

J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, “Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays,” Opt. Express 10, 309–323 (2002).
[PubMed]

J. H. Frank, S. A. Kaiser, and M. B. Long, “Reaction-Rate, Mixture-Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[Crossref]

2001 (1)

2000 (1)

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

1999 (1)

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

1998 (1)

1997 (1)

J. W. Daily, “Laser Induced Fluorescence Spectroscopy in Flames,” Prog. Energy Combust. Sci. 23, 133–199 (1997).
[Crossref]

1995 (2)

1994 (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–280 (1994).
[Crossref]

1993 (1)

1991 (2)

M. Schäfer, W. Ketterle, and J. Wolfrum, “Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames,” Appl. Phys. B 52, 341–346 (1991).
[Crossref]

N. Streibl, U. Nölscher, J. Jahns, and S. Walker, “Array generation with lenslet arrays,” Appl. Opt. 30, 2739–2742 (1991).
[Crossref] [PubMed]

1986 (1)

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Bader, K.

Benajes, J. V.

Berger, P.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

Beyrau, F.

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982–4989 (2006).
[Crossref] [PubMed]

S. Pfadler, M. Löffler, F. Dinkelacker, F. Beyrau, and A. Leipertz, “Simultaneous Two-Dimensional Determination of Mixture Fraction and Flow-Velocity in a Non-Reacting Free Jet Flow by Planar LIF and PIV,” in 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Lisbon, 2006), paper 18–11.

Braeuer, A.

Burghardt, B.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

Chen, Z.

Daily, J. W.

J. W. Daily, “Laser Induced Fluorescence Spectroscopy in Flames,” Prog. Energy Combust. Sci. 23, 133–199 (1997).
[Crossref]

Deng, X.

Dickey, F. M.

F. M. Dickey, S. C. Holswade, and D. Shealy, Laser Beam Shaping Applications (CRC Press, 2005).
[Crossref]

Dinkelacker, F.

S. Pfadler, M. Löffler, F. Dinkelacker, F. Beyrau, and A. Leipertz, “Simultaneous Two-Dimensional Determination of Mixture Fraction and Flow-Velocity in a Non-Reacting Free Jet Flow by Planar LIF and PIV,” in 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Lisbon, 2006), paper 18–11.

Döbbeling, K.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Tunbrigde Wells, Kent, UK, 1988).

Egermann, J.

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

Ewart, P.

Frank, J. H.

S. A. Kaiser, J. H. Frank, and M. B. Long, “Use of Rayleigh imaging and ray tracing to correct for beam-steering effects in turbulent flames,” Appl. Opt. 44, 6557–6564 (2005).
[Crossref] [PubMed]

J. H. Frank, S. A. Kaiser, and M. B. Long, “Reaction-Rate, Mixture-Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[Crossref]

Gupta, S.

Haumann, J.

Hochgreb, S.

Holswade, S. C.

F. M. Dickey, S. C. Holswade, and D. Shealy, Laser Beam Shaping Applications (CRC Press, 2005).
[Crossref]

Hügel, H.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

Jahns, J.

Jasper, K.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

Julia, J. E.

Kahlert, H.-J.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

Kaiser, S. A.

S. A. Kaiser, J. H. Frank, and M. B. Long, “Use of Rayleigh imaging and ray tracing to correct for beam-steering effects in turbulent flames,” Appl. Opt. 44, 6557–6564 (2005).
[Crossref] [PubMed]

J. H. Frank, S. A. Kaiser, and M. B. Long, “Reaction-Rate, Mixture-Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[Crossref]

Kampmann, S.

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Kayes, D.

Ketterle, W.

M. Schäfer, W. Ketterle, and J. Wolfrum, “Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames,” Appl. Phys. B 52, 341–346 (1991).
[Crossref]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–280 (1994).
[Crossref]

Leipertz, A.

Liang, X.

Löffler, M.

S. Pfadler, M. Löffler, F. Dinkelacker, F. Beyrau, and A. Leipertz, “Simultaneous Two-Dimensional Determination of Mixture Fraction and Flow-Velocity in a Non-Reacting Free Jet Flow by Planar LIF and PIV,” in 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Lisbon, 2006), paper 18–11.

Long, M. B.

S. A. Kaiser, J. H. Frank, and M. B. Long, “Use of Rayleigh imaging and ray tracing to correct for beam-steering effects in turbulent flames,” Appl. Opt. 44, 6557–6564 (2005).
[Crossref] [PubMed]

J. H. Frank, S. A. Kaiser, and M. B. Long, “Reaction-Rate, Mixture-Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[Crossref]

Lopez, J. J.

Lucht, R. P.

Ma, R.

Malarski, A.

Marrocco, M.

Michelsen, H. A.

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Miyanaga, N.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Nakatsuka, M.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Ni, T.

Nölscher, U.

Pastor, J. V.

Paul, P. H.

P. H. Paul, “The application of intensified array detectors to quantitative planar laser induced fluorescence imaging,” in 27th Joint Propulsion Conference(AIAA, Sacramento, California, 1991).

Pfadler, S.

S. Pfadler, M. Löffler, F. Dinkelacker, F. Beyrau, and A. Leipertz, “Simultaneous Two-Dimensional Determination of Mixture Fraction and Flow-Velocity in a Non-Reacting Free Jet Flow by Planar LIF and PIV,” in 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Lisbon, 2006), paper 18–11.

Pinson, J. A.

Ray, G.

Roy, S.

Santoro, R. J.

Sattelmayer, T.

Schäfer, M.

M. Schäfer, W. Ketterle, and J. Wolfrum, “Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames,” Appl. Phys. B 52, 341–346 (1991).
[Crossref]

Scheede, S.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

Schraml, S.

Schulz, C.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 76–121 (2005).
[Crossref]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

Senczuk, R.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

Shealy, D.

F. M. Dickey, S. C. Holswade, and D. Shealy, Laser Beam Shaping Applications (CRC Press, 2005).
[Crossref]

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 76–121 (2005).
[Crossref]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

Stevens, R.

Streibl, N.

Walker, S.

Will, S.

Witze, P. O.

Wolfrum, J.

M. Schäfer, W. Ketterle, and J. Wolfrum, “Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames,” Appl. Phys. B 52, 341–346 (1991).
[Crossref]

Yamanaka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Yu, W.

Zehnder, J.

Appl. Opt. (9)

X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986).
[Crossref] [PubMed]

S. Will, S. Schraml, K. Bader, and A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[Crossref]

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[Crossref] [PubMed]

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, “Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering,” Appl. Opt. 32, 6167–6172 (1993).
[Crossref] [PubMed]

N. Streibl, U. Nölscher, J. Jahns, and S. Walker, “Array generation with lenslet arrays,” Appl. Opt. 30, 2739–2742 (1991).
[Crossref] [PubMed]

S. Roy, G. Ray, and R. P. Lucht, “Interline transfer CCD camera for gated broadband coherent anti-Stokes Raman-scattering measurements,” Appl. Opt. 40, 6005–6011 (2001).
[Crossref]

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 5577–5590 (2003).
[Crossref] [PubMed]

S. A. Kaiser, J. H. Frank, and M. B. Long, “Use of Rayleigh imaging and ray tracing to correct for beam-steering effects in turbulent flames,” Appl. Opt. 44, 6557–6564 (2005).
[Crossref] [PubMed]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982–4989 (2006).
[Crossref] [PubMed]

Appl. Phys. A (1)

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys. A 69, 315–318 (1999).
[Crossref]

Appl. Phys. B (2)

M. Schäfer, W. Ketterle, and J. Wolfrum, “Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames,” Appl. Phys. B 52, 341–346 (1991).
[Crossref]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Let. (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Let. 53, 1057–1060 (1984).
[Crossref]

Proc. Combust. Inst. (1)

J. H. Frank, S. A. Kaiser, and M. B. Long, “Reaction-Rate, Mixture-Fraction, and Temperature Imaging in Turbulent Methane/Air Jet Flames,” Proc. Combust. Inst. 29, 2687–2694 (2002).
[Crossref]

Prog. Energy Combust. Sci. (3)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–280 (1994).
[Crossref]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 76–121 (2005).
[Crossref]

J. W. Daily, “Laser Induced Fluorescence Spectroscopy in Flames,” Prog. Energy Combust. Sci. 23, 133–199 (1997).
[Crossref]

Other (4)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Tunbrigde Wells, Kent, UK, 1988).

F. M. Dickey, S. C. Holswade, and D. Shealy, Laser Beam Shaping Applications (CRC Press, 2005).
[Crossref]

S. Pfadler, M. Löffler, F. Dinkelacker, F. Beyrau, and A. Leipertz, “Simultaneous Two-Dimensional Determination of Mixture Fraction and Flow-Velocity in a Non-Reacting Free Jet Flow by Planar LIF and PIV,” in 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Lisbon, 2006), paper 18–11.

P. H. Paul, “The application of intensified array detectors to quantitative planar laser induced fluorescence imaging,” in 27th Joint Propulsion Conference(AIAA, Sacramento, California, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Optical set-up of the experiment.

Fig. 2.
Fig. 2.

Schematic principle of beam homogenization.

Fig. 3.
Fig. 3.

Averaged image of the fluorescence signal, without the application of the beam-homogenizer.

Fig. 4.
Fig. 4.

Averaged image of the fluorescence signal, with the application of the beam-homogenizer.

Fig. 5.
Fig. 5.

Exemplary non-processed image with applied homogenizer (shown is the single shot result of a tracer-LIF measurement of the mixing field of two different turbulent flows.

Fig. 6.
Fig. 6.

RMS image of the normalized fluorescence signal, without the application of the beam-homogenizer.

Fig. 7.
Fig. 7.

RMS image of the normalized fluorescence signal, with the application of the beam-homogenizer.

Fig. 8.
Fig. 8.

RMS fluctuation of the normalized intensity as a function of the averaged intensity - with and without the application of the homogenizer (the black curves indicate the relationship I′¯~()-1/2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) ¯ = 1 n i = 1 n I i ( x , y )
I RMS ( x , y ) ¯ = 1 n i = 1 n ( I i ( x , y ) I ( x , y ) ¯ 1 ) 2
SNR = N p η G e , MCP [ N p η G e , MCP ( G e , MCP κ + 1 ) + ( N x / G e , phos ) 2 ] 1 / 2 ,

Metrics