Abstract

The first application of a microlens array beam homogenizer to planar laser measurement techniques in combustion diagnostics is demonstrated. The beam homogenizing properties of two microlens arrays in combination with a Fourier lens for widespread applications are presented. An uniform line profile with very little temporal fluctuations of the spatial intensity distribution was generated resulting in a significant reduction of measurement noise and enabling an easier and faster signal processing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Schulz, and V. Sick, "Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems," Prog. Energy Combust. Sci. 31, 76 - 121 (2005).
    [CrossRef]
  2. S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, "Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering," Appl. Opt. 32, 6167-6172 (1993).
    [CrossRef] [PubMed]
  3. S. Will, S. Schraml, and A. Leipertz, "Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence," Opt. Lett. 20, 2342-2344 (1995).
    [CrossRef] [PubMed]
  4. A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, "Simultaneous application of single-shot Ramanography and particle image velocimetry," Opt. Lett. 31, 1005-1007 (2006).
    [CrossRef] [PubMed]
  5. J. W. Daily, "Laser Induced Fluorescence Spectroscopy in Flames," Prog. Energy Combust. Sci. 23, 133-199 (1997).
    [CrossRef]
  6. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Tunbrigde Wells, Kent, UK, 1988).
  7. K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-280 (1994).
    [CrossRef]
  8. M. Marrocco, "Spatial laser-wing suppression in saturated laser-induced fluorescence without spatial selection," Opt. Lett. 28, 2016-2018 (2003).
    [CrossRef] [PubMed]
  9. M. Schäfer, W. Ketterle, and J. Wolfrum, "Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames," Appl. Phys. B 52, 341-346 (1991).
    [CrossRef]
  10. S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
    [CrossRef]
  11. H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
    [CrossRef] [PubMed]
  12. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
    [CrossRef] [PubMed]
  13. J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, "Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays," Opt. Express 10, 309-323 (2002).
    [PubMed]
  14. S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation," Appl. Phys. B 71, 717-723 (2000).
    [CrossRef]
  15. X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986).
    [CrossRef] [PubMed]
  16. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
    [CrossRef]
  17. K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
    [CrossRef]
  18. A. Braeuer, F. Beyrau, and A. Leipertz, "Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements," Appl. Opt. 45, 4982-4989 (2006).
    [CrossRef] [PubMed]
  19. N. Streibl, U. Nölscher, J. Jahns, and S. Walker, "Array generation with lenslet arrays," Appl. Opt. 30, 2739-2742 (1991).
    [CrossRef] [PubMed]

2006 (2)

A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, "Simultaneous application of single-shot Ramanography and particle image velocimetry," Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, and A. Leipertz, "Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements," Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Schulz, and V. Sick, "Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems," Prog. Energy Combust. Sci. 31, 76 - 121 (2005).
[CrossRef]

2003 (2)

M. Marrocco, "Spatial laser-wing suppression in saturated laser-induced fluorescence without spatial selection," Opt. Lett. 28, 2016-2018 (2003).
[CrossRef] [PubMed]

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
[CrossRef] [PubMed]

2002 (1)

J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, "Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays," Opt. Express 10, 309-323 (2002).
[PubMed]

2000 (1)

S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation," Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

1999 (1)

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

1998 (1)

S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
[CrossRef]

1997 (1)

J. W. Daily, "Laser Induced Fluorescence Spectroscopy in Flames," Prog. Energy Combust. Sci. 23, 133-199 (1997).
[CrossRef]

1995 (2)

S. Will, S. Schraml, and A. Leipertz, "Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence," Opt. Lett. 20, 2342-2344 (1995).
[CrossRef] [PubMed]

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

1994 (1)

K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-280 (1994).
[CrossRef]

1993 (1)

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, "Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering," Appl. Opt. 32, 6167-6172 (1993).
[CrossRef] [PubMed]

1991 (2)

M. Schäfer, W. Ketterle, and J. Wolfrum, "Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames," Appl. Phys. B 52, 341-346 (1991).
[CrossRef]

N. Streibl, U. Nölscher, J. Jahns, and S. Walker, "Array generation with lenslet arrays," Appl. Opt. 30, 2739-2742 (1991).
[CrossRef] [PubMed]

1986 (1)

X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986).
[CrossRef] [PubMed]

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Bader, K.

S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
[CrossRef]

Benajes, J. V.

J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, "Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays," Opt. Express 10, 309-323 (2002).
[PubMed]

Berger, P.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

Beyrau, F.

A. Braeuer, F. Beyrau, and A. Leipertz, "Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements," Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

Braeuer, A.

A. Braeuer, F. Beyrau, and A. Leipertz, "Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements," Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

Burghardt, B.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

Chen, Z.

X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986).
[CrossRef] [PubMed]

Daily, J. W.

J. W. Daily, "Laser Induced Fluorescence Spectroscopy in Flames," Prog. Energy Combust. Sci. 23, 133-199 (1997).
[CrossRef]

Deng, X.

X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986).
[CrossRef] [PubMed]

Döbbeling, K.

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, "Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering," Appl. Opt. 32, 6167-6172 (1993).
[CrossRef] [PubMed]

Egermann, J.

A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, "Simultaneous application of single-shot Ramanography and particle image velocimetry," Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation," Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

Gupta, S.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

Haumann, J.

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, "Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering," Appl. Opt. 32, 6167-6172 (1993).
[CrossRef] [PubMed]

Hochgreb, S.

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
[CrossRef] [PubMed]

Hügel, H.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

Jasper, K.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

Julia, J. E.

J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, "Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays," Opt. Express 10, 309-323 (2002).
[PubMed]

Kahlert, H.-J.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

Kampmann, S.

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, "Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering," Appl. Opt. 32, 6167-6172 (1993).
[CrossRef] [PubMed]

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Kayes, D.

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
[CrossRef] [PubMed]

Ketterle, W.

M. Schäfer, W. Ketterle, and J. Wolfrum, "Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames," Appl. Phys. B 52, 341-346 (1991).
[CrossRef]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-280 (1994).
[CrossRef]

Leipertz, A.

A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, "Simultaneous application of single-shot Ramanography and particle image velocimetry," Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, and A. Leipertz, "Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements," Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
[CrossRef]

S. Will, S. Schraml, and A. Leipertz, "Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence," Opt. Lett. 20, 2342-2344 (1995).
[CrossRef] [PubMed]

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, "Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering," Appl. Opt. 32, 6167-6172 (1993).
[CrossRef] [PubMed]

Liang, X.

X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986).
[CrossRef] [PubMed]

Lopez, J. J.

J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, "Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays," Opt. Express 10, 309-323 (2002).
[PubMed]

Ma, R.

X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986).
[CrossRef] [PubMed]

Malarski, A.

A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, "Simultaneous application of single-shot Ramanography and particle image velocimetry," Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

Marrocco, M.

M. Marrocco, "Spatial laser-wing suppression in saturated laser-induced fluorescence without spatial selection," Opt. Lett. 28, 2016-2018 (2003).
[CrossRef] [PubMed]

Michelsen, H. A.

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
[CrossRef] [PubMed]

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Miyanaga, N.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Nakatsuka, M.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

Pastor, J. V.

J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, "Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays," Opt. Express 10, 309-323 (2002).
[PubMed]

Pinson, J. A.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

Sattelmayer, T.

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, "Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering," Appl. Opt. 32, 6167-6172 (1993).
[CrossRef] [PubMed]

Schäfer, M.

M. Schäfer, W. Ketterle, and J. Wolfrum, "Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames," Appl. Phys. B 52, 341-346 (1991).
[CrossRef]

Scheede, S.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

Schraml, S.

S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
[CrossRef]

S. Will, S. Schraml, and A. Leipertz, "Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence," Opt. Lett. 20, 2342-2344 (1995).
[CrossRef] [PubMed]

Schulz, C.

C. Schulz, and V. Sick, "Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems," Prog. Energy Combust. Sci. 31, 76 - 121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation," Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

Senczuk, R.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

Sick, V.

C. Schulz, and V. Sick, "Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems," Prog. Energy Combust. Sci. 31, 76 - 121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation," Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

Will, S.

S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
[CrossRef]

S. Will, S. Schraml, and A. Leipertz, "Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence," Opt. Lett. 20, 2342-2344 (1995).
[CrossRef] [PubMed]

Witze, P. O.

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
[CrossRef] [PubMed]

Wolfrum, J.

M. Schäfer, W. Ketterle, and J. Wolfrum, "Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames," Appl. Phys. B 52, 341-346 (1991).
[CrossRef]

Yamanaka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Yu, W.

X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986).
[CrossRef] [PubMed]

Zehnder, J.

A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, "Simultaneous application of single-shot Ramanography and particle image velocimetry," Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

Appl. Opt. (7)

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, "Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering," Appl. Opt. 32, 6167-6172 (1993).
[CrossRef] [PubMed]

S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
[CrossRef]

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, "Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms," Appl. Opt. 42, 5577-5590 (2003).
[CrossRef] [PubMed]

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, "Uniform illumination of large targets using a lens array," Appl. Opt. 25, 377-381 (1986).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, and A. Leipertz, "Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements," Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

N. Streibl, U. Nölscher, J. Jahns, and S. Walker, "Array generation with lenslet arrays," Appl. Opt. 30, 2739-2742 (1991).
[CrossRef] [PubMed]

Appl. Phys. A (1)

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H.-J. Kahlert, and H. Hügel, "Excimer laser beam homogenizer with low divergence," Appl. Phys. A 69, 315-318 (1999).
[CrossRef]

Appl. Phys. B (2)

S. Einecke, C. Schulz, and V. Sick, "Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combusation," Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

M. Schäfer, W. Ketterle, and J. Wolfrum, "Saturated 2D-LIF of OH and 2D Determination of Effective Collisional Lifetimes in Atmospheric Pressure Flames," Appl. Phys. B 52, 341-346 (1991).
[CrossRef]

Opt. Express (1)

J. V. Pastor, J. J. Lopez, J. E. Julia, and J. V. Benajes, "Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays," Opt. Express 10, 309-323 (2002).
[PubMed]

Opt. Lett. (3)

M. Marrocco, "Spatial laser-wing suppression in saturated laser-induced fluorescence without spatial selection," Opt. Lett. 28, 2016-2018 (2003).
[CrossRef] [PubMed]

S. Will, S. Schraml, and A. Leipertz, "Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence," Opt. Lett. 20, 2342-2344 (1995).
[CrossRef] [PubMed]

A. Malarski, J. Egermann, J. Zehnder, and A. Leipertz, "Simultaneous application of single-shot Ramanography and particle image velocimetry," Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

Phys. Rev. Let. (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression," Phys. Rev. Let. 53, 1057-1060 (1984).
[CrossRef]

Prog. Energy Combust. Sci. (3)

J. W. Daily, "Laser Induced Fluorescence Spectroscopy in Flames," Prog. Energy Combust. Sci. 23, 133-199 (1997).
[CrossRef]

C. Schulz, and V. Sick, "Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems," Prog. Energy Combust. Sci. 31, 76 - 121 (2005).
[CrossRef]

K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-280 (1994).
[CrossRef]

Other (1)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Tunbrigde Wells, Kent, UK, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Optical set-up of the experiment.

Fig. 2.
Fig. 2.

Schematic principle of beam homogenization.

Fig. 3.
Fig. 3.

Averaged image of the fluorescence signal, without the application of the beam-homogenizer.

Fig. 4.
Fig. 4.

Averaged image of the fluorescence signal, with the application of the beam-homogenizer.

Fig. 5.
Fig. 5.

Exemplary non-processed image with applied homogenizer (shown is the single shot result of a tracer-LIF measurement of the mixing field of two different turbulent flows.

Fig. 6.
Fig. 6.

RMS image of the normalized fluorescence signal, without the application of the beam-homogenizer.

Fig. 7.
Fig. 7.

RMS image of the normalized fluorescence signal, with the application of the beam-homogenizer.

Fig. 8.
Fig. 8.

RMS fluctuation of the normalized intensity as a function of the averaged intensity - with and without the application of the homogenizer (the black curves indicate the relationship I′¯~()-1/2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) ¯ = 1 n i = 1 n I i ( x , y )
I RMS ( x , y ) ¯ = 1 n i = 1 n ( I i ( x , y ) I ( x , y ) ¯ 1 ) 2
SNR = N p η G e , MCP [ N p η G e , MCP ( G e , MCP κ + 1 ) + ( N x / G e , phos ) 2 ] 1 / 2 ,

Metrics