Abstract

We demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of an all-optical F = 1 spinor Bose-Einstein condensate whose Zeeman sublevel populations have been coherently evolved through spin dynamics. The condensate is formed through all-optical means using a single-beam running-wave dipole trap. We create a condensate in the magnetic field-insensitive mF = 0 state, and drive coherent spin-mixing evolution through adiabatic compression of the initially weak trap. Such dual beams, number-correlated through the angular momentum-conserving reaction 2m 0m +1 + m -1, have been proposed as tools to explore entanglement and squeezing in Bose-Einstein condensates, and have potential use in precision phase measurements.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Singular atom optics with spinor Bose–Einstein condensates

Azure Hansen, Justin T. Schultz, and Nicholas P. Bigelow
Optica 3(4) 355-361 (2016)

Ramsey interferometry with an atom laser

D. Döring, J. E. Debs, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close
Opt. Express 17(23) 20661-20668 (2009)

Transport of Bose-Einstein condensate in QUIC trap and separation of trapping spin states

Dezhi Xiong, Pengjun Wang, Zhengkun Fu, and Jing Zhang
Opt. Express 18(2) 1649-1656 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Stengeret al., “Spin domains in ground-state Bose-Einstein condensates,” Nature 396, 345 (1998).
    [Crossref]
  2. H.-J. Miesneret al., “Observation of metastable states in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 82, 2228–2231 (1999).
    [Crossref]
  3. D. M. Stamper-Kurnet al., “Quantum tunneling across spin domains in a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 661–665 (1999).
    [Crossref]
  4. A. E. Leanhardtet al., “Coreless vortex formation in a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 90, 140403 (2003).
    [Crossref] [PubMed]
  5. M.-S. Changet al., “Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates,” Phys. Rev. Lett. 92, 140,403 (2004).
  6. H. Schmaljohannet al., “Dynamics of F = 2 spinor Bose-Einstein condensates,” Phys. Rev. Lett. 92, 040402 (2004).
    [Crossref] [PubMed]
  7. J. Mur-Petitet al., “Dynamics of F = 1 87Rb condensates at finite temperatures,” Phys. Rev. A 73, 013629 (2006).
    [Crossref]
  8. J. Kronjageret al., “Evolution of a spinor condensate: coherent dynamics, dephasing, and revivals,” Phys. Rev. A 72, 063619 (2005).
    [Crossref]
  9. T. Kuwamotoet al., “Magnetic field dependence of the dynamics of 87Rb spin-2 Bose-Einstein condensates,” Phys. Rev. A 69, 063604 (2004).
    [Crossref]
  10. M.-S. Changet al., “Coherent spinor dynamics in a spin-1 Bose condensate,” Nature Phys. 1, 111 (2005).
    [Crossref]
  11. M. Erhardet al., “Bose-Einstein condensation at constant temperature,” Phys. Rev. A 70, 031602 (2004).
    [Crossref]
  12. J. M. Higbieet al., “Direct nondestructive imaging of magnetization in a spin-1 Bose-Einstein gas,” Phys. Rev. Lett. 95, 050401 (2005).
    [Crossref] [PubMed]
  13. A. Gorlitzet al., “Sodium Bose-Einstein condensates in the F = 2 State in a large-volume optical trap,” Phys. Rev. Lett. 90, 090401 (2003).
    [Crossref] [PubMed]
  14. T.-L. Ho, “Spinor Bose condensates in optical traps,” Phys. Rev. Lett. 81, 742 (1998).
    [Crossref]
  15. W. Zhang, S. Yi, and L. You, “Mean field ground state of a spin-1 condensate in a magnetic field,” New J. Phys. 5, 77.1 (2003).
    [Crossref]
  16. C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins mixing in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).
    [Crossref]
  17. T. Ohmi and K. Machida, “Bose-Einstein condensation with internal degrees of freedom in alkali atom gases,” J. Phys. Soc. Japan 67, 1822 (1998).
    [Crossref]
  18. W. Zhanget al., “Coherent spin mixing dynamics in a spin-1 atomic condensate,” Phys. Rev. A 72, 013602 (2005).
    [Crossref]
  19. H. Puet al., “Spin-mixing dynamics of a spinor Bose-Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).
    [Crossref]
  20. L.-M. Duan, A. Sorenson, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett 85, 3991 (2000).
    [Crossref] [PubMed]
  21. H. Pu and P. Meystre, “Creating macroscopic atomic Einstein-Podolsky- Rosen states from Bose-Einstein condensates,” Phys. Rev. Lett 85, 3987 (2000).
    [Crossref] [PubMed]
  22. E. G. M. van Kempenet al., “Interisotope determination of ultracold rubidium interactions from three high-precision experiments,” Phys. Rev. Lett. 88, 093201 (2002).
    [Crossref] [PubMed]
  23. N. N. Klausen, J. L. Bohn, and C. H. Greene, “Nature of spinor Bose-Einstein condensates in rubidium,” Phys. Rev. A 64, 053602 (2001).
    [Crossref]
  24. J. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates,” Phys. Rev. Lett. 89, 020401 (2002).
    [Crossref] [PubMed]
  25. G. Cenniniet al., “All-optical realization of an atom laser,” Phys. Rev. Lett. 91, 240408 (2003).
    [Crossref] [PubMed]
  26. M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
    [Crossref] [PubMed]
  27. K. Dieckmannet al., “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
    [Crossref]
  28. R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Optics Express 11, 1709 (2003).
    [Crossref] [PubMed]
  29. R. Dumkeet al., “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New Journal of Physics 8, 64 (2006).
    [Crossref]
  30. E. A. Burtet al., “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337 (1997).
    [Crossref]
  31. I. Bloch, T. W. Hansch, and T. Esslinger, “Atom laser with a cw output coupler,” Phys. Rev. Lett. 82, 3008–3011 (1999).
    [Crossref]
  32. P. Bouyer and M. A. Kasevich, “Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases,” Phys. Rev. A 56, R1083–R1086 (1997).
    [Crossref]

2006 (2)

J. Mur-Petitet al., “Dynamics of F = 1 87Rb condensates at finite temperatures,” Phys. Rev. A 73, 013629 (2006).
[Crossref]

R. Dumkeet al., “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New Journal of Physics 8, 64 (2006).
[Crossref]

2005 (4)

J. Kronjageret al., “Evolution of a spinor condensate: coherent dynamics, dephasing, and revivals,” Phys. Rev. A 72, 063619 (2005).
[Crossref]

M.-S. Changet al., “Coherent spinor dynamics in a spin-1 Bose condensate,” Nature Phys. 1, 111 (2005).
[Crossref]

J. M. Higbieet al., “Direct nondestructive imaging of magnetization in a spin-1 Bose-Einstein gas,” Phys. Rev. Lett. 95, 050401 (2005).
[Crossref] [PubMed]

W. Zhanget al., “Coherent spin mixing dynamics in a spin-1 atomic condensate,” Phys. Rev. A 72, 013602 (2005).
[Crossref]

2004 (4)

M. Erhardet al., “Bose-Einstein condensation at constant temperature,” Phys. Rev. A 70, 031602 (2004).
[Crossref]

T. Kuwamotoet al., “Magnetic field dependence of the dynamics of 87Rb spin-2 Bose-Einstein condensates,” Phys. Rev. A 69, 063604 (2004).
[Crossref]

M.-S. Changet al., “Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates,” Phys. Rev. Lett. 92, 140,403 (2004).

H. Schmaljohannet al., “Dynamics of F = 2 spinor Bose-Einstein condensates,” Phys. Rev. Lett. 92, 040402 (2004).
[Crossref] [PubMed]

2003 (5)

A. E. Leanhardtet al., “Coreless vortex formation in a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 90, 140403 (2003).
[Crossref] [PubMed]

A. Gorlitzet al., “Sodium Bose-Einstein condensates in the F = 2 State in a large-volume optical trap,” Phys. Rev. Lett. 90, 090401 (2003).
[Crossref] [PubMed]

W. Zhang, S. Yi, and L. You, “Mean field ground state of a spin-1 condensate in a magnetic field,” New J. Phys. 5, 77.1 (2003).
[Crossref]

G. Cenniniet al., “All-optical realization of an atom laser,” Phys. Rev. Lett. 91, 240408 (2003).
[Crossref] [PubMed]

R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Optics Express 11, 1709 (2003).
[Crossref] [PubMed]

2002 (2)

J. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates,” Phys. Rev. Lett. 89, 020401 (2002).
[Crossref] [PubMed]

E. G. M. van Kempenet al., “Interisotope determination of ultracold rubidium interactions from three high-precision experiments,” Phys. Rev. Lett. 88, 093201 (2002).
[Crossref] [PubMed]

2001 (2)

N. N. Klausen, J. L. Bohn, and C. H. Greene, “Nature of spinor Bose-Einstein condensates in rubidium,” Phys. Rev. A 64, 053602 (2001).
[Crossref]

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[Crossref] [PubMed]

2000 (2)

L.-M. Duan, A. Sorenson, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett 85, 3991 (2000).
[Crossref] [PubMed]

H. Pu and P. Meystre, “Creating macroscopic atomic Einstein-Podolsky- Rosen states from Bose-Einstein condensates,” Phys. Rev. Lett 85, 3987 (2000).
[Crossref] [PubMed]

1999 (4)

I. Bloch, T. W. Hansch, and T. Esslinger, “Atom laser with a cw output coupler,” Phys. Rev. Lett. 82, 3008–3011 (1999).
[Crossref]

H. Puet al., “Spin-mixing dynamics of a spinor Bose-Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).
[Crossref]

H.-J. Miesneret al., “Observation of metastable states in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 82, 2228–2231 (1999).
[Crossref]

D. M. Stamper-Kurnet al., “Quantum tunneling across spin domains in a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 661–665 (1999).
[Crossref]

1998 (5)

J. Stengeret al., “Spin domains in ground-state Bose-Einstein condensates,” Nature 396, 345 (1998).
[Crossref]

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins mixing in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).
[Crossref]

T. Ohmi and K. Machida, “Bose-Einstein condensation with internal degrees of freedom in alkali atom gases,” J. Phys. Soc. Japan 67, 1822 (1998).
[Crossref]

T.-L. Ho, “Spinor Bose condensates in optical traps,” Phys. Rev. Lett. 81, 742 (1998).
[Crossref]

K. Dieckmannet al., “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

1997 (2)

P. Bouyer and M. A. Kasevich, “Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases,” Phys. Rev. A 56, R1083–R1086 (1997).
[Crossref]

E. A. Burtet al., “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337 (1997).
[Crossref]

Aveline, D. C.

R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Optics Express 11, 1709 (2003).
[Crossref] [PubMed]

Barrett, M. D.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[Crossref] [PubMed]

Bigelow, N. P.

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins mixing in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).
[Crossref]

Bloch, I.

I. Bloch, T. W. Hansch, and T. Esslinger, “Atom laser with a cw output coupler,” Phys. Rev. Lett. 82, 3008–3011 (1999).
[Crossref]

Bohn, J. L.

N. N. Klausen, J. L. Bohn, and C. H. Greene, “Nature of spinor Bose-Einstein condensates in rubidium,” Phys. Rev. A 64, 053602 (2001).
[Crossref]

Bouyer, P.

P. Bouyer and M. A. Kasevich, “Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases,” Phys. Rev. A 56, R1083–R1086 (1997).
[Crossref]

Burt, E. A.

E. A. Burtet al., “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337 (1997).
[Crossref]

Cennini, G.

G. Cenniniet al., “All-optical realization of an atom laser,” Phys. Rev. Lett. 91, 240408 (2003).
[Crossref] [PubMed]

Chang, M.-S.

M.-S. Changet al., “Coherent spinor dynamics in a spin-1 Bose condensate,” Nature Phys. 1, 111 (2005).
[Crossref]

M.-S. Changet al., “Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates,” Phys. Rev. Lett. 92, 140,403 (2004).

Chapman, M. S.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[Crossref] [PubMed]

Cirac, J. I.

L.-M. Duan, A. Sorenson, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett 85, 3991 (2000).
[Crossref] [PubMed]

Dieckmann, K.

K. Dieckmannet al., “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

Duan, L.-M.

L.-M. Duan, A. Sorenson, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett 85, 3991 (2000).
[Crossref] [PubMed]

Dumke, R.

R. Dumkeet al., “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New Journal of Physics 8, 64 (2006).
[Crossref]

Erhard, M.

M. Erhardet al., “Bose-Einstein condensation at constant temperature,” Phys. Rev. A 70, 031602 (2004).
[Crossref]

Esslinger, T.

I. Bloch, T. W. Hansch, and T. Esslinger, “Atom laser with a cw output coupler,” Phys. Rev. Lett. 82, 3008–3011 (1999).
[Crossref]

Gorlitz, A.

A. Gorlitzet al., “Sodium Bose-Einstein condensates in the F = 2 State in a large-volume optical trap,” Phys. Rev. Lett. 90, 090401 (2003).
[Crossref] [PubMed]

Greene, C. H.

N. N. Klausen, J. L. Bohn, and C. H. Greene, “Nature of spinor Bose-Einstein condensates in rubidium,” Phys. Rev. A 64, 053602 (2001).
[Crossref]

Hansch, T. W.

I. Bloch, T. W. Hansch, and T. Esslinger, “Atom laser with a cw output coupler,” Phys. Rev. Lett. 82, 3008–3011 (1999).
[Crossref]

Higbie, J. M.

J. M. Higbieet al., “Direct nondestructive imaging of magnetization in a spin-1 Bose-Einstein gas,” Phys. Rev. Lett. 95, 050401 (2005).
[Crossref] [PubMed]

Ho, T.-L.

T.-L. Ho, “Spinor Bose condensates in optical traps,” Phys. Rev. Lett. 81, 742 (1998).
[Crossref]

Kasevich, M. A.

P. Bouyer and M. A. Kasevich, “Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases,” Phys. Rev. A 56, R1083–R1086 (1997).
[Crossref]

Kempen, E. G. M. van

E. G. M. van Kempenet al., “Interisotope determination of ultracold rubidium interactions from three high-precision experiments,” Phys. Rev. Lett. 88, 093201 (2002).
[Crossref] [PubMed]

Ketterle, W.

J. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates,” Phys. Rev. Lett. 89, 020401 (2002).
[Crossref] [PubMed]

Klausen, N. N.

N. N. Klausen, J. L. Bohn, and C. H. Greene, “Nature of spinor Bose-Einstein condensates in rubidium,” Phys. Rev. A 64, 053602 (2001).
[Crossref]

Kronjager, J.

J. Kronjageret al., “Evolution of a spinor condensate: coherent dynamics, dephasing, and revivals,” Phys. Rev. A 72, 063619 (2005).
[Crossref]

Kuwamoto, T.

T. Kuwamotoet al., “Magnetic field dependence of the dynamics of 87Rb spin-2 Bose-Einstein condensates,” Phys. Rev. A 69, 063604 (2004).
[Crossref]

Law, C. K.

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins mixing in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).
[Crossref]

Leanhardt, A. E.

A. E. Leanhardtet al., “Coreless vortex formation in a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 90, 140403 (2003).
[Crossref] [PubMed]

Lundblad, N.

R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Optics Express 11, 1709 (2003).
[Crossref] [PubMed]

Machida, K.

T. Ohmi and K. Machida, “Bose-Einstein condensation with internal degrees of freedom in alkali atom gases,” J. Phys. Soc. Japan 67, 1822 (1998).
[Crossref]

Maleki, L.

R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Optics Express 11, 1709 (2003).
[Crossref] [PubMed]

Meystre, P.

H. Pu and P. Meystre, “Creating macroscopic atomic Einstein-Podolsky- Rosen states from Bose-Einstein condensates,” Phys. Rev. Lett 85, 3987 (2000).
[Crossref] [PubMed]

Miesner, H.-J.

H.-J. Miesneret al., “Observation of metastable states in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 82, 2228–2231 (1999).
[Crossref]

Mur-Petit, J.

J. Mur-Petitet al., “Dynamics of F = 1 87Rb condensates at finite temperatures,” Phys. Rev. A 73, 013629 (2006).
[Crossref]

Ohmi, T.

T. Ohmi and K. Machida, “Bose-Einstein condensation with internal degrees of freedom in alkali atom gases,” J. Phys. Soc. Japan 67, 1822 (1998).
[Crossref]

Pu, H.

H. Pu and P. Meystre, “Creating macroscopic atomic Einstein-Podolsky- Rosen states from Bose-Einstein condensates,” Phys. Rev. Lett 85, 3987 (2000).
[Crossref] [PubMed]

H. Puet al., “Spin-mixing dynamics of a spinor Bose-Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).
[Crossref]

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins mixing in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).
[Crossref]

Sauer, J. A.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[Crossref] [PubMed]

Schmaljohann, H.

H. Schmaljohannet al., “Dynamics of F = 2 spinor Bose-Einstein condensates,” Phys. Rev. Lett. 92, 040402 (2004).
[Crossref] [PubMed]

Sorenson, A.

L.-M. Duan, A. Sorenson, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett 85, 3991 (2000).
[Crossref] [PubMed]

Stamper-Kurn, D. M.

D. M. Stamper-Kurnet al., “Quantum tunneling across spin domains in a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 661–665 (1999).
[Crossref]

Stenger, J.

J. Stengeret al., “Spin domains in ground-state Bose-Einstein condensates,” Nature 396, 345 (1998).
[Crossref]

Thompson, R. J.

R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Optics Express 11, 1709 (2003).
[Crossref] [PubMed]

Tu, M.

R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Optics Express 11, 1709 (2003).
[Crossref] [PubMed]

Vogels, J.

J. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates,” Phys. Rev. Lett. 89, 020401 (2002).
[Crossref] [PubMed]

Xu, K.

J. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates,” Phys. Rev. Lett. 89, 020401 (2002).
[Crossref] [PubMed]

Yi, S.

W. Zhang, S. Yi, and L. You, “Mean field ground state of a spin-1 condensate in a magnetic field,” New J. Phys. 5, 77.1 (2003).
[Crossref]

You, L.

W. Zhang, S. Yi, and L. You, “Mean field ground state of a spin-1 condensate in a magnetic field,” New J. Phys. 5, 77.1 (2003).
[Crossref]

Zhang, W.

W. Zhanget al., “Coherent spin mixing dynamics in a spin-1 atomic condensate,” Phys. Rev. A 72, 013602 (2005).
[Crossref]

W. Zhang, S. Yi, and L. You, “Mean field ground state of a spin-1 condensate in a magnetic field,” New J. Phys. 5, 77.1 (2003).
[Crossref]

Zoller, P.

L.-M. Duan, A. Sorenson, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett 85, 3991 (2000).
[Crossref] [PubMed]

J. Phys. Soc. Japan (1)

T. Ohmi and K. Machida, “Bose-Einstein condensation with internal degrees of freedom in alkali atom gases,” J. Phys. Soc. Japan 67, 1822 (1998).
[Crossref]

Nature (1)

J. Stengeret al., “Spin domains in ground-state Bose-Einstein condensates,” Nature 396, 345 (1998).
[Crossref]

Nature Phys. (1)

M.-S. Changet al., “Coherent spinor dynamics in a spin-1 Bose condensate,” Nature Phys. 1, 111 (2005).
[Crossref]

New J. Phys. (1)

W. Zhang, S. Yi, and L. You, “Mean field ground state of a spin-1 condensate in a magnetic field,” New J. Phys. 5, 77.1 (2003).
[Crossref]

New Journal of Physics (1)

R. Dumkeet al., “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New Journal of Physics 8, 64 (2006).
[Crossref]

Optics Express (1)

R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Optics Express 11, 1709 (2003).
[Crossref] [PubMed]

Phys. Rev. A (9)

K. Dieckmannet al., “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

N. N. Klausen, J. L. Bohn, and C. H. Greene, “Nature of spinor Bose-Einstein condensates in rubidium,” Phys. Rev. A 64, 053602 (2001).
[Crossref]

P. Bouyer and M. A. Kasevich, “Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases,” Phys. Rev. A 56, R1083–R1086 (1997).
[Crossref]

J. Mur-Petitet al., “Dynamics of F = 1 87Rb condensates at finite temperatures,” Phys. Rev. A 73, 013629 (2006).
[Crossref]

J. Kronjageret al., “Evolution of a spinor condensate: coherent dynamics, dephasing, and revivals,” Phys. Rev. A 72, 063619 (2005).
[Crossref]

T. Kuwamotoet al., “Magnetic field dependence of the dynamics of 87Rb spin-2 Bose-Einstein condensates,” Phys. Rev. A 69, 063604 (2004).
[Crossref]

W. Zhanget al., “Coherent spin mixing dynamics in a spin-1 atomic condensate,” Phys. Rev. A 72, 013602 (2005).
[Crossref]

H. Puet al., “Spin-mixing dynamics of a spinor Bose-Einstein condensate,” Phys. Rev. A 60, 1463–1470 (1999).
[Crossref]

M. Erhardet al., “Bose-Einstein condensation at constant temperature,” Phys. Rev. A 70, 031602 (2004).
[Crossref]

Phys. Rev. Lett (2)

L.-M. Duan, A. Sorenson, J. I. Cirac, and P. Zoller, “Squeezing and entanglement of atomic beams,” Phys. Rev. Lett 85, 3991 (2000).
[Crossref] [PubMed]

H. Pu and P. Meystre, “Creating macroscopic atomic Einstein-Podolsky- Rosen states from Bose-Einstein condensates,” Phys. Rev. Lett 85, 3987 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (15)

E. G. M. van Kempenet al., “Interisotope determination of ultracold rubidium interactions from three high-precision experiments,” Phys. Rev. Lett. 88, 093201 (2002).
[Crossref] [PubMed]

C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spins mixing in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 81, 5257–5261 (1998).
[Crossref]

J. M. Higbieet al., “Direct nondestructive imaging of magnetization in a spin-1 Bose-Einstein gas,” Phys. Rev. Lett. 95, 050401 (2005).
[Crossref] [PubMed]

A. Gorlitzet al., “Sodium Bose-Einstein condensates in the F = 2 State in a large-volume optical trap,” Phys. Rev. Lett. 90, 090401 (2003).
[Crossref] [PubMed]

T.-L. Ho, “Spinor Bose condensates in optical traps,” Phys. Rev. Lett. 81, 742 (1998).
[Crossref]

H.-J. Miesneret al., “Observation of metastable states in spinor Bose-Einstein condensates,” Phys. Rev. Lett. 82, 2228–2231 (1999).
[Crossref]

D. M. Stamper-Kurnet al., “Quantum tunneling across spin domains in a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 661–665 (1999).
[Crossref]

A. E. Leanhardtet al., “Coreless vortex formation in a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 90, 140403 (2003).
[Crossref] [PubMed]

M.-S. Changet al., “Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates,” Phys. Rev. Lett. 92, 140,403 (2004).

H. Schmaljohannet al., “Dynamics of F = 2 spinor Bose-Einstein condensates,” Phys. Rev. Lett. 92, 040402 (2004).
[Crossref] [PubMed]

J. Vogels, K. Xu, and W. Ketterle, “Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates,” Phys. Rev. Lett. 89, 020401 (2002).
[Crossref] [PubMed]

G. Cenniniet al., “All-optical realization of an atom laser,” Phys. Rev. Lett. 91, 240408 (2003).
[Crossref] [PubMed]

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[Crossref] [PubMed]

E. A. Burtet al., “Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337 (1997).
[Crossref]

I. Bloch, T. W. Hansch, and T. Esslinger, “Atom laser with a cw output coupler,” Phys. Rev. Lett. 82, 3008–3011 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Spinor BEC creation options: a) the default triplet, with repeatable population distribution likely set by initial MOT alignment; b) mF = 0 trap, created by selective application of magnetic field gradient along the weak axis of the trap; c) enhanced mF = +1, created via application of a supportive gradient throughout evaporation. Gravity is directed toward the lower right, and the trapping laser is directed toward the upper right. All images are of partially condensed samples at a ballistic expansion time of 17.5 ms. The long axis of the dipole trap is directed toward the upper right. Images are 1.3 mm × 1 mm.

Fig. 2.
Fig. 2.

The effect of adiabatic compression on the spin mixing process; the top row shows condensates held for equivalent durations without compression. a) 100 ms of hold time at 700 mW b) 400 ms of hold time c) 1.2 s of hold time. The slightly fewer overall number in (c) is due to condensate lifetime. The ballistic expansion time for all images is 17.5 ms. Images are 1 mm × .8 mm.

Fig. 3.
Fig. 3.

A typical outcoupling run of the spinor dynamics-driven dual beam atom laser. a) 0 ms: the full condensate, in situ. b)+ 20 ms: immediately after outcoupling. The mF = -1 component immediately passes beyond the reach of the dipole trap and experiences ballistic flight and mean-field expansion. The mF = +1 component remains confined in an effective guide and travels in the opposite direction. c) +25 ms: the mF = -1 beam continues to propagate while the mF = +1 beam is turned around and returned toward the origin. d) +45 ms: the mF = +1 beam now falls freely and experiences mean-field expansion, like the mF = -1 component before it. Note a slightly different path than mF = -1. e) +50 ms: continued mF = +1 propagation; note the mF = -1 component has traveled out of the field of view by this point. Images are 1 mm × .25 mm; gravity is directed toward the lower right and the trapping laser is directed toward the upper right.

Fig. 4.
Fig. 4.

Downward outcoupling of the supported mF = +1 condensate (cf. Fig. 1c), generated by removing the supportive gradient that had preferentially created a polarized condensate. This is shown to illustrate the difference in outcoupled beam collimation between the case where mean-field expansion is along the direction of propagation and the case of the spinor dynamics-driven atom laser in Fig. 3, where expansion is perpendicular to travel. Images are 1.2 mm × .75 mm.

Metrics