Abstract

The interplay between localized surface plasmon (LSP) and surface plasmon-polariton (SPP) is studied in detail in a system composed of a three-dimensional gold particle located at a short distance from a gold thin film. Important frequency shifts of the LSP associated with the particle are observed for spacing distances between 0 and 50 nm. Beyond this distance the LSP and SPP resonances overlap, although some cavity effects between the particle and the film can still be observed. In particular, when the spacing increases the field in the cavity decreases more slowly than one would expect from a simple image dipole interpretation. For short separations the coupling between the particle and the film can produce a dramatic enhancement of the electromagnetic field in the space between them, where the electric field intensity can reach 5000 times that of the illumination field. Several movies show the spectral and time evolutions of the field distribution in the system both in and out of resonance. The character of the different modes excited in the system is studied. They include dipolar and quadrupolar modes, the latter exhibiting essentially a magnetic response.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupling localized and extended plasmons to improve the light extraction through metal films

Jean Cesario, María Ujué Gonzalez, Stéphanie Cheylan, William. L. Barnes, Stefan Enoch, and Romain Quidant
Opt. Express 15(17) 10533-10539 (2007)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

SERS enhancements via periodic arrays of gold nanoparticles on silver film structures

Jason M. Montgomery, Alexandra Imre, Ulrich Welp, Vitalii Vlasko-Vlasov, and Stephen K. Gray
Opt. Express 17(10) 8669-8675 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp and H. Kneipp, “Surface enhanced Raman scattering - A tool for ultrasensitive trace analysis,” Can. J. Anal. Sci. Spectrosc. 48, 125–131 (2003).
  2. A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
    [Crossref]
  3. A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
    [Crossref]
  4. J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 1774012005.
    [Crossref] [PubMed]
  5. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi“Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
    [Crossref]
  6. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
    [Crossref]
  7. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008 (2001).
    [Crossref] [PubMed]
  8. I. P. Radko, T. Sondergaard, and S. I. Bozhevolnyi, “Adiabatic bends in surface plasmon polariton band gap structures,” Opt. Express 14, 4107 (2006).
    [Crossref] [PubMed]
  9. J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
    [Crossref]
  10. J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” App. Phys. Lett. 87, 221101 (2005).
    [Crossref]
  11. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
    [Crossref] [PubMed]
  12. V. S. Volkov, S. I. Bozhevolnyi, E. S. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express 14, 4494–4503 (2006).
    [Crossref] [PubMed]
  13. W. R. Holland and D. G. Hall, “Frequency Shifts of an Electric-Dipole Resonance near a Conducting Surface,” Phys. Rev. Lett. 52, 1041 (1984).
    [Crossref]
  14. M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green’s tensor approach,”J. Opt. Soc. Am. A 18, 854 (2001).
    [Crossref]
  15. J. P. Kottmann and O. J. F. Martin, “Accurate Solution of the Volume Integral Equation for High-Permittivity Scatterers,” IEEE Trans. Antennas Propagat. 48, 1719 (2000).
    [Crossref]
  16. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  17. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848 (1988).
    [Crossref]
  18. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden“Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
    [Crossref] [PubMed]

2006 (4)

A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
[Crossref]

I. P. Radko, T. Sondergaard, and S. I. Bozhevolnyi, “Adiabatic bends in surface plasmon polariton band gap structures,” Opt. Express 14, 4107 (2006).
[Crossref] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. S. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express 14, 4494–4503 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden“Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

2005 (4)

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” App. Phys. Lett. 87, 221101 (2005).
[Crossref]

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 1774012005.
[Crossref] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi“Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

2004 (1)

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

K. Kneipp and H. Kneipp, “Surface enhanced Raman scattering - A tool for ultrasensitive trace analysis,” Can. J. Anal. Sci. Spectrosc. 48, 125–131 (2003).

2001 (3)

M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green’s tensor approach,”J. Opt. Soc. Am. A 18, 854 (2001).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[Crossref]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008 (2001).
[Crossref] [PubMed]

2000 (1)

J. P. Kottmann and O. J. F. Martin, “Accurate Solution of the Volume Integral Equation for High-Permittivity Scatterers,” IEEE Trans. Antennas Propagat. 48, 1719 (2000).
[Crossref]

1988 (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848 (1988).
[Crossref]

1984 (1)

W. R. Holland and D. G. Hall, “Frequency Shifts of an Electric-Dipole Resonance near a Conducting Surface,” Phys. Rev. Lett. 52, 1041 (1984).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Baudrion, A.-L.

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” App. Phys. Lett. 87, 221101 (2005).
[Crossref]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Berini, P.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi“Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

Bozhevolnyi, S. I.

Charbonneau, R.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi“Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Deckert, V.

A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
[Crossref]

Dereux, A.

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” App. Phys. Lett. 87, 221101 (2005).
[Crossref]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Devaux, E.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Devaux, E. S.

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden“Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Draine, B. T.

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848 (1988).
[Crossref]

Ebbesen, T.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Ebbesen, T. W.

Elam, J. W.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

Eng, L.

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 1774012005.
[Crossref] [PubMed]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden“Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008 (2001).
[Crossref] [PubMed]

Girard, C.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

González, M. U.

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” App. Phys. Lett. 87, 221101 (2005).
[Crossref]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Grafstrom, S.

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 1774012005.
[Crossref] [PubMed]

Hall, D. G.

W. R. Holland and D. G. Hall, “Frequency Shifts of an Electric-Dipole Resonance near a Conducting Surface,” Phys. Rev. Lett. 52, 1041 (1984).
[Crossref]

Holland, W. R.

W. R. Holland and D. G. Hall, “Frequency Shifts of an Electric-Dipole Resonance near a Conducting Surface,” Phys. Rev. Lett. 52, 1041 (1984).
[Crossref]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008 (2001).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Kneipp, H.

K. Kneipp and H. Kneipp, “Surface enhanced Raman scattering - A tool for ultrasensitive trace analysis,” Can. J. Anal. Sci. Spectrosc. 48, 125–131 (2003).

Kneipp, K.

K. Kneipp and H. Kneipp, “Surface enhanced Raman scattering - A tool for ultrasensitive trace analysis,” Can. J. Anal. Sci. Spectrosc. 48, 125–131 (2003).

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[Crossref]

J. P. Kottmann and O. J. F. Martin, “Accurate Solution of the Volume Integral Equation for High-Permittivity Scatterers,” IEEE Trans. Antennas Propagat. 48, 1719 (2000).
[Crossref]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Lahoud, N.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi“Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008 (2001).
[Crossref] [PubMed]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden“Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Martin, O. J. F.

M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green’s tensor approach,”J. Opt. Soc. Am. A 18, 854 (2001).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[Crossref]

J. P. Kottmann and O. J. F. Martin, “Accurate Solution of the Volume Integral Equation for High-Permittivity Scatterers,” IEEE Trans. Antennas Propagat. 48, 1719 (2000).
[Crossref]

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi“Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

Paulus, M.

Radko, I. P.

Rasmussen, A.

A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
[Crossref]

Schatz, G. C.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[Crossref]

Seidel, J.

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 1774012005.
[Crossref] [PubMed]

Skovgaard, P. M.W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008 (2001).
[Crossref] [PubMed]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[Crossref]

Sondergaard, T.

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden“Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Stair, P. C.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

Van Duyne, R. P.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

Volkov, V. S.

Weeber, J.-C.

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” App. Phys. Lett. 87, 221101 (2005).
[Crossref]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden“Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Whitney, A. V.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

Zinovev, A. V.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

Zou, S. L.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

App. Phys. Lett. (1)

J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” App. Phys. Lett. 87, 221101 (2005).
[Crossref]

Astrophys. J. (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848 (1988).
[Crossref]

Can. J. Anal. Sci. Spectrosc. (1)

K. Kneipp and H. Kneipp, “Surface enhanced Raman scattering - A tool for ultrasensitive trace analysis,” Can. J. Anal. Sci. Spectrosc. 48, 125–131 (2003).

IEEE Trans. Antennas Propagat. (1)

J. P. Kottmann and O. J. F. Martin, “Accurate Solution of the Volume Integral Equation for High-Permittivity Scatterers,” IEEE Trans. Antennas Propagat. 48, 1719 (2000).
[Crossref]

J. Appl. Phys. (1)

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi“Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109, 20522–20528 (2005).
[Crossref]

J. Raman Spectrosc. (1)

A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (3)

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Phys. Rev. Lett. (3)

W. R. Holland and D. G. Hall, “Frequency Shifts of an Electric-Dipole Resonance near a Conducting Surface,” Phys. Rev. Lett. 52, 1041 (1984).
[Crossref]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008 (2001).
[Crossref] [PubMed]

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 1774012005.
[Crossref] [PubMed]

Science (1)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden“Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Supplementary Material (8)

» Media 1: AVI (2694 KB)     
» Media 2: AVI (729 KB)     
» Media 3: AVI (1668 KB)     
» Media 4: AVI (1656 KB)     
» Media 5: AVI (1537 KB)     
» Media 6: AVI (2692 KB)     
» Media 7: AVI (2528 KB)     
» Media 8: AVI (2615 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Geometry of the system investigated: a square-basis gold particle of thickness t and side a is located at a distance d above a 50-nm-thick gold film deposited on a silica substrate.

Fig. 2.
Fig. 2.

(a) Dispersion curve of the SPP modes established at the two interfaces of a 50-nm-thick gold slab deposited on a glass substrate. The red lines represent the light lines of the air (dashed) and the glass (solid). Axes are the inverse surface wavelength (horizontal axis), and the inverse free-space wavelength (vertical axis). (b) Extinction spectrum of the gold particle in free space.

Fig. 3.
Fig. 3.

Time evolution of the structure of the electric field inside the incidence plane at the plasmon resonance, λ=600 nm. The colorscale represents the amplitude of the electric field and the green arrows represent the instantaneous direction of the projection of the polarization of the electric field on the incidence plane. (a) t=0.52T; (b) t=0.74T, where T is the temporal period of light. One movie of 2.6 Mb.

Fig. 4.
Fig. 4.

Far-field spectrum of the gold particle for several distances d between the gold interface and the nanoparticle. The field intensity has been computed in the direction perpendicular to the surface, at infinity. (a) d≤100 nm; (b) for d≥100 nm, far-field intensities have been corrected by a factor κ = 2 π ε sin ( 45 o ) 1 λ (see text).

Fig. 5.
Fig. 5.

Evolution of the structure of the electric field inside the incidence plane with the distance d between the gold film and the particle, at λ=600 nm. The colorscale represents the amplitude of the electric field. The green (respectively yellow) arrows represents the real (respectively imaginary) part of the electric field polarization. (a) d=10 nm; (b) d=50 nm. One movie of size 0.7 Mb.

Fig. 6.
Fig. 6.

Maximum intensity of the electric field along the top interface of the gold film as a function of the distance d between the particle and the layer (black line). The red line is a fit in d -3/2, the blue line is the value of the electric field intensity just above the film without the metallic particle.

Fig. 7.
Fig. 7.

Spectral evolution of the structure of the electric field inside the incidence plane for two distances between the gold layer and the particle: (a) d=10 nm [Media 3], (b) d=50 nm [Media 4]. The colorscale represents the amplitude of the electric field. The green (respectively yellow) arrows represent the real (respectively imaginary) part of the electric field polarization. Two movies of size 1.7 Mb.

Fig. 8.
Fig. 8.

Spectral evolution of the structure of the electric field in the gap between the particle and the film, just above the metallic film (z=0+) for a distance between the gold film and the particle of d=10 nm. The colorscale represents the amplitude of the electric field. The green (respectively yellow) arrows represent the real (respectively imaginary) part of the electric field polarization. (a) λ=600 nm; (b) λ=740 nm. One movie of size 1.6 Mb.

Fig. 9.
Fig. 9.

Time evolution of the structure of the electric field inside the incidence plane for d=10 nm and for three wavelegnth: (a) λ=500 nm [Media 6], (b) λ=610 nm [Media 7], and (c) λ=740 nm [Media 8]. The colorscale represents the amplitude of the electric field, and the green arrows represent the instantaneous direction of the projection of the polarization of the electric field on the incidence plane. Three movies of size 2.7 Mb.

Metrics