Abstract

A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  2. M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005).
    [CrossRef] [PubMed]
  3. T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 1619041 (2005).
    [CrossRef]
  4. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  5. L. -J. Chen, H. -W. Chen, T. -F. Kao, J. -Y. Lu, and C. -K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006).
    [CrossRef] [PubMed]
  6. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
    [CrossRef]
  7. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
    [CrossRef]
  8. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
    [CrossRef]
  9. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Jpn. J. Appl. Phys. 43, 317-319 (2004).
    [CrossRef]
  10. R. F. Cregan,  et al. "Single-mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  11. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  12. L. Tong,  et al. "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  13. E. A. J. Marcatili, and R. A. Schmetzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43,1783 (1964).
  14. J. A. Harrington and C. C. Gregory, "Hollow sapphire fibers for the delivery of CO2 laser energy," Opt. Lett. 10, 541-543 (1990).
    [CrossRef]
  15. K. Y. Kim, H. S. Tae, and J. H. Lee, "Measurement of dielectric and radiation losses for flexible circular dielectric waveguides in Q-band," Microwave Opt. Technol. Lett. 35, 102-106 (2002).
    [CrossRef]
  16. HFSS, Version 9.2.1, Agilent Technologies.
  17. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity float-zone silicon," J. Opt. Soc. Am. B 21, 1379-1386 (2004).
    [CrossRef]
  18. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  19. M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Antennas Propag. 10, 246-254 (1962).
    [CrossRef]
  20. W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single-mode optical fibres," Opt. Quantum. Elect. 11, 43-59 (1979).
    [CrossRef]
  21. T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet" Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  22. A. T. James and A. J. P. Martin, "Gas-Liquid Partition Chromatography - The Separation And Micro-Estimaton Of Volatile Fatty Acids From Formic Acid To Dodecanoic Acid," Biochem. J. 50,679-690 (1952).
    [PubMed]
  23. SGE Fused Silica Tubing, Part No 062710, http://sge.com.au/htm/gc/supplies/tubing/fused_silica_nondeac.asp
  24. M. Nagel, M. Först, and H. Kurz, "THz biosensing devices: fundamentals and technology," J. Phys. Condens. Matter 18, 601-618 (2006).
    [CrossRef]
  25. H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
    [CrossRef]

2006

M. Nagel, M. Först, and H. Kurz, "THz biosensing devices: fundamentals and technology," J. Phys. Condens. Matter 18, 601-618 (2006).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet" Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

L. -J. Chen, H. -W. Chen, T. -F. Kao, J. -Y. Lu, and C. -K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006).
[CrossRef] [PubMed]

2005

M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005).
[CrossRef] [PubMed]

T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 1619041 (2005).
[CrossRef]

2004

2003

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

L. Tong,  et al. "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

2002

K. Y. Kim, H. S. Tae, and J. H. Lee, "Measurement of dielectric and radiation losses for flexible circular dielectric waveguides in Q-band," Microwave Opt. Technol. Lett. 35, 102-106 (2002).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

2000

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

1999

R. F. Cregan,  et al. "Single-mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

1997

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

1990

1979

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single-mode optical fibres," Opt. Quantum. Elect. 11, 43-59 (1979).
[CrossRef]

1964

E. A. J. Marcatili, and R. A. Schmetzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43,1783 (1964).

1962

M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Antennas Propag. 10, 246-254 (1962).
[CrossRef]

1952

A. T. James and A. J. P. Martin, "Gas-Liquid Partition Chromatography - The Separation And Micro-Estimaton Of Volatile Fatty Acids From Formic Acid To Dodecanoic Acid," Biochem. J. 50,679-690 (1952).
[PubMed]

Almeida, V. R.

Barrios, C. A.

Chen, H. -W.

Chen, L. -J.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Cregan, R. F.

R. F. Cregan,  et al. "Single-mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Dai, J.

Fattinger, C.

Först, M.

M. Nagel, M. Först, and H. Kurz, "THz biosensing devices: fundamentals and technology," J. Phys. Condens. Matter 18, 601-618 (2006).
[CrossRef]

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single-mode optical fibres," Opt. Quantum. Elect. 11, 43-59 (1979).
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Jpn. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Gregory, C. C.

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet" Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 1619041 (2005).
[CrossRef]

J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity float-zone silicon," J. Opt. Soc. Am. B 21, 1379-1386 (2004).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
[CrossRef]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Harrington, J. A.

Heiliger, H.-M.

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

Heinrich, W.

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

Hey, R.

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

James, A. T.

A. T. James and A. J. P. Martin, "Gas-Liquid Partition Chromatography - The Separation And Micro-Estimaton Of Volatile Fatty Acids From Formic Acid To Dodecanoic Acid," Biochem. J. 50,679-690 (1952).
[PubMed]

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Jeon, T.

T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 1619041 (2005).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet" Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

Kao, T. -F.

Keiding, S.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Kim, K. Y.

K. Y. Kim, H. S. Tae, and J. H. Lee, "Measurement of dielectric and radiation losses for flexible circular dielectric waveguides in Q-band," Microwave Opt. Technol. Lett. 35, 102-106 (2002).
[CrossRef]

King, M. J.

M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Antennas Propag. 10, 246-254 (1962).
[CrossRef]

Knight, J. C.

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Kurz, H.

M. Nagel, M. Först, and H. Kurz, "THz biosensing devices: fundamentals and technology," J. Phys. Condens. Matter 18, 601-618 (2006).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005).
[CrossRef] [PubMed]

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

Lee, J. H.

K. Y. Kim, H. S. Tae, and J. H. Lee, "Measurement of dielectric and radiation losses for flexible circular dielectric waveguides in Q-band," Microwave Opt. Technol. Lett. 35, 102-106 (2002).
[CrossRef]

Lipson, M.

Lu, J. -Y.

Marcatili, E. A. J.

E. A. J. Marcatili, and R. A. Schmetzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43,1783 (1964).

Martin, A. J. P.

A. T. James and A. J. P. Martin, "Gas-Liquid Partition Chromatography - The Separation And Micro-Estimaton Of Volatile Fatty Acids From Formic Acid To Dodecanoic Acid," Biochem. J. 50,679-690 (1952).
[PubMed]

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single-mode optical fibres," Opt. Quantum. Elect. 11, 43-59 (1979).
[CrossRef]

McGowan, R. W.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Mendis, R.

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

Mittleman, M

K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Nagel, M.

M. Nagel, M. Först, and H. Kurz, "THz biosensing devices: fundamentals and technology," J. Phys. Condens. Matter 18, 601-618 (2006).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005).
[CrossRef] [PubMed]

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Jpn. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Ploog, K.

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Jpn. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single-mode optical fibres," Opt. Quantum. Elect. 11, 43-59 (1979).
[CrossRef]

Roskos, H. G.

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Jpn. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Schmetzer, R. A.

E. A. J. Marcatili, and R. A. Schmetzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43,1783 (1964).

Schnieder, F.

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

Sun, C. -K.

Tae, H. S.

K. Y. Kim, H. S. Tae, and J. H. Lee, "Measurement of dielectric and radiation losses for flexible circular dielectric waveguides in Q-band," Microwave Opt. Technol. Lett. 35, 102-106 (2002).
[CrossRef]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Jpn. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Tong, L.

L. Tong,  et al. "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

van Exter, M.

Wächter, M.

Wang, K.

K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Wiltse, J. C.

M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Antennas Propag. 10, 246-254 (1962).
[CrossRef]

Xu, Q.

Zhang, J.

Zhang, W.

Appl. Phys. Lett.

T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 1619041 (2005).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet" Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili, and R. A. Schmetzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43,1783 (1964).

Biochem. J.

A. T. James and A. J. P. Martin, "Gas-Liquid Partition Chromatography - The Separation And Micro-Estimaton Of Volatile Fatty Acids From Formic Acid To Dodecanoic Acid," Biochem. J. 50,679-690 (1952).
[PubMed]

IEEE Trans. Antennas Propag.

M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Antennas Propag. 10, 246-254 (1962).
[CrossRef]

J. Appl. Phys.

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

M. Nagel, M. Först, and H. Kurz, "THz biosensing devices: fundamentals and technology," J. Phys. Condens. Matter 18, 601-618 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Jpn. J. Appl. Phys. 43, 317-319 (2004).
[CrossRef]

Microwave Opt. Technol. Lett.

K. Y. Kim, H. S. Tae, and J. H. Lee, "Measurement of dielectric and radiation losses for flexible circular dielectric waveguides in Q-band," Microwave Opt. Technol. Lett. 35, 102-106 (2002).
[CrossRef]

Nature

K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

L. Tong,  et al. "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Quantum. Elect.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single-mode optical fibres," Opt. Quantum. Elect. 11, 43-59 (1979).
[CrossRef]

Science

R. F. Cregan,  et al. "Single-mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other

HFSS, Version 9.2.1, Agilent Technologies.

SGE Fused Silica Tubing, Part No 062710, http://sge.com.au/htm/gc/supplies/tubing/fused_silica_nondeac.asp

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Geometries of the considered dielectric waveguide structures: (a) A split rectangular waveguide and (b) a tube waveguide.

Fig. 2.
Fig. 2.

Distribution of the normalized scalar z-component of the time-averaged Poynting vector Sz over a linear color scale in the cross section area of the waveguides. (a) Float-zone silicon split rectangular waveguide at f=0.7 THz with w=54 µm, h=90 µm and g=18 µm. (b) Fused silica tube waveguide at f=0.5 THz with R=181.5 µm and r=27 µm.

Fig. 3.
Fig. 3.

Geometrical definition of the regions considered as dielectric material (blue), inner (red) and outer (white) air regions.

Fig. 4.
Fig. 4.

Power ratio confined in the material and in the low-index gap or channel region for a SRW and TW. (a) Variation of h and R with h=1.6̄ w=5g and R=2r (b) Variation of g and r with h=90 µm, w=54 µm, r=R-90 µm.

Fig. 5.
Fig. 5.

Frequency-dependent (a) attenuation and (b) effective permittivity of tube and rectangular dielectric waveguide structures with and without a low-index gap. For comparison, the transmission properties of a Sommerfeld copper wire with a radius R=1 mm are shown as well.

Fig. 6.
Fig. 6.

Electric field magnitude distribution of the fundamental transmission mode at (a) a bended Sommerfeld wire (R=140 µm, f=500 GHz), (b) a bended TW (R=181.5 µm and r=27 µm, f=0.5 THz) and (c) a bended SRW (h=90 µm, w=54 µm and g=18 µm, f=700 GHz), the latter both with the E-field polarized in parallel direction to the bending plane. The bending radius of the applied 45° segment of a circle is 2 mm.

Fig. 7.
Fig. 7.

Time-domain THz signals measured at two tube waveguides of 30 mm and 40 mm length. The data has been time-shifted and normalized to the peak amplitude of the 30-mm-signal to point up dispersion and attenuation effects.

Fig. 8.
Fig. 8.

Measured and simulated (a) attenuation α and (b) effective permittivity εr,eff of the tube waveguide as a function of frequency. The grey marked range exhibits a high level of noise due to the limited amplitude bandwidth of the applied emitter/detector devices. Phase noise is considerably lower than amplitude noise.

Metrics