Abstract

C-shaped ridge apertures are used in contact nanolithography to achieve nanometer scale resolution. Lithography results demonstrated that holes as small as 60 nm can be produced in the photoresist by illuminating the apertures with a 355 nm laser beam. Experiments are also performed using comparable square and rectangular apertures. Results show enhanced transmission and light concentration of C apertures compared to the apertures with regular shapes. Finite difference time domain simulations are used to design the apertures and explain the experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
    [CrossRef]
  2. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
    [CrossRef]
  3. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
    [CrossRef]
  4. S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
    [CrossRef]
  5. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4, 1085–1088 (2004).
    [CrossRef]
  6. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
    [CrossRef]
  7. Z. Liu, Q. Wei, and X. Zhang, “Surface Plasmon Interference Nanolithography,” Nano Lett. 5, 957–961 (2005).
    [CrossRef] [PubMed]
  8. E. H. Synge, “A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region,” Philosophical Magazine. 6, 356–362 (1928).
  9. H. Bethe “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  10. X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
    [CrossRef]
  11. E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
    [CrossRef]
  12. K. Sendur, W. Challener, and C. Peng, “Ridge Waveguide as a Near-field Aperture for High Density Data Storage,” J. of Appl. Phys. 96, 2743–2752 (2004).
    [CrossRef]
  13. E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” 2005 J. of Quantitative Spectroscopy and Radiative Transfer. 93, 163–173 (2005).
    [CrossRef]
  14. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, 111106 (2005).
    [CrossRef]
  15. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  16. F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
    [CrossRef]
  17. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
    [CrossRef]
  18. J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  19. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano lett. 6, 361–364 (2006).
    [CrossRef] [PubMed]
  20. E. X. Jin and X. Xu, “Enhanced Optical Near Field from a Bowtie Aperture,” Appl. Phys. Lett. 88, 153110 (2006).
    [CrossRef]
  21. X. Xu, E. X. Jin, L. Wang, and S. M. Uppuluri, “Design, fabrication, and characterization of nanometer-scale ridged aperture optical antenna,” Proc. SPIE 6106, 61061J (2006).
    [CrossRef]
  22. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
    [CrossRef] [PubMed]

2006 (4)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Enhanced Optical Near Field from a Bowtie Aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. M. Uppuluri, “Design, fabrication, and characterization of nanometer-scale ridged aperture optical antenna,” Proc. SPIE 6106, 61061J (2006).
[CrossRef]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

2005 (5)

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Z. Liu, Q. Wei, and X. Zhang, “Surface Plasmon Interference Nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” 2005 J. of Quantitative Spectroscopy and Radiative Transfer. 93, 163–173 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

2004 (5)

E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
[CrossRef]

K. Sendur, W. Challener, and C. Peng, “Ridge Waveguide as a Near-field Aperture for High Density Data Storage,” J. of Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
[CrossRef]

2003 (1)

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

2002 (1)

X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
[CrossRef]

1999 (1)

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

1997 (1)

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

1996 (1)

S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

1944 (1)

H. Bethe “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

1928 (1)

E. H. Synge, “A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region,” Philosophical Magazine. 6, 356–362 (1928).

Aizenberg, J.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

Akhremitchev, B. B.

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Bain, J.

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

Bethe, H.

H. Bethe “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Challener, W.

K. Sendur, W. Challener, and C. Peng, “Ridge Waveguide as a Near-field Aperture for High Density Data Storage,” J. of Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Chen, F.

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Davy, S.

S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

Eisler, H.-J.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
[CrossRef]

Hecht, B.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Hesselink, L.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
[CrossRef]

X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
[CrossRef]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

Itagi, A.

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Enhanced Optical Near Field from a Bowtie Aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. M. Uppuluri, “Design, fabrication, and characterization of nanometer-scale ridged aperture optical antenna,” Proc. SPIE 6106, 61061J (2006).
[CrossRef]

E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” 2005 J. of Quantitative Spectroscopy and Radiative Transfer. 93, 163–173 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Liu, Z.

Z. Liu, Q. Wei, and X. Zhang, “Surface Plasmon Interference Nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

Matteo, J. A.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
[CrossRef]

Paul, K. E.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

Peng, C.

K. Sendur, W. Challener, and C. Peng, “Ridge Waveguide as a Near-field Aperture for High Density Data Storage,” J. of Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Pohl, D.W.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Rogers, J. A.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

Schlesinger, T. E.

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
[CrossRef]

Sendur, K.

K. Sendur, W. Challener, and C. Peng, “Ridge Waveguide as a Near-field Aperture for High Density Data Storage,” J. of Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Shi, X.

X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
[CrossRef]

Spajer, M.

S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Stancil, D. D.

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

Stebounova, L.

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Synge, E. H.

E. H. Synge, “A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region,” Philosophical Magazine. 6, 356–362 (1928).

Uppuluri, S. M.

X. Xu, E. X. Jin, L. Wang, and S. M. Uppuluri, “Design, fabrication, and characterization of nanometer-scale ridged aperture optical antenna,” Proc. SPIE 6106, 61061J (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Walker, G. C.

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

Wang, L.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

X. Xu, E. X. Jin, L. Wang, and S. M. Uppuluri, “Design, fabrication, and characterization of nanometer-scale ridged aperture optical antenna,” Proc. SPIE 6106, 61061J (2006).
[CrossRef]

Wei, Q.

Z. Liu, Q. Wei, and X. Zhang, “Surface Plasmon Interference Nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Whitesides, G. M.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

Xu, X.

E. X. Jin and X. Xu, “Enhanced Optical Near Field from a Bowtie Aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. M. Uppuluri, “Design, fabrication, and characterization of nanometer-scale ridged aperture optical antenna,” Proc. SPIE 6106, 61061J (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” 2005 J. of Quantitative Spectroscopy and Radiative Transfer. 93, 163–173 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
[CrossRef]

Yuen, Y.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
[CrossRef]

Zhang, X.

Z. Liu, Q. Wei, and X. Zhang, “Surface Plasmon Interference Nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Appl. Phys. Lett. (9)

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

F. Chen, A. Itagi, J. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247 (2003).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648–650 (2004).
[CrossRef]

E. X. Jin and X. Xu, “Enhanced Optical Near Field from a Bowtie Aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

J. of Appl. Phys. (1)

K. Sendur, W. Challener, and C. Peng, “Ridge Waveguide as a Near-field Aperture for High Density Data Storage,” J. of Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

J. of Quantitative Spectroscopy and Radiative Transfer. (1)

E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” 2005 J. of Quantitative Spectroscopy and Radiative Transfer. 93, 163–173 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (2)

X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41, 1632–1635 (2002).
[CrossRef]

E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
[CrossRef]

Nano Lett. (2)

Z. Liu, Q. Wei, and X. Zhang, “Surface Plasmon Interference Nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano lett. 6, 355–360 (2006).
[CrossRef] [PubMed]

Philosophical Magazine. (1)

E. H. Synge, “A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region,” Philosophical Magazine. 6, 356–362 (1928).

Phys. Rev. (1)

H. Bethe “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. Lett. (2)

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

X. Xu, E. X. Jin, L. Wang, and S. M. Uppuluri, “Design, fabrication, and characterization of nanometer-scale ridged aperture optical antenna,” Proc. SPIE 6106, 61061J (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) C, (b) H, and (c) bowtie shaped ridge apertures.

Fig. 2.
Fig. 2.

Spectral response of C aperture with 120 nm×100 nm outline and 50 nm×50 nm gap in a 120 nm thick aluminum film. Transmission efficiency is defined by transmitted intensity integrated over the C aperture area normalized by the incident intensity integrated over the same area.

Fig. 3.
Fig. 3.

Electrical field amplitude distribution normalized to the incident field at a distance 20 nm in the photoresist (a) C, (b) REC, (c) SQ, and (d) SSQ apertures

Fig. 4.
Fig. 4.

SEM image of the lithography mask pattern.

Fig. 5.
Fig. 5.

Schematic diagram of the experimental lithography setup.

Fig. 6.
Fig. 6.

AFM image of lithography results at 1.5 s (a) and 0.5 s (b) exposure time. (c) An enlarged image of lithography hole formed by the C aperture at a 0.2 s exposure time and its cross section profile.

Fig. 7.
Fig. 7.

AFM image and topography profile of C aperture array at 0.2 s exposure time

Tables (2)

Tables Icon

Table 1. Comparison of C and regular apertures

Tables Icon

Table 2. Lithography results with varying exposure times.

Metrics