Abstract

We propose to encode optical information through the localized depoling of polar chromophores in thin films of grafted polymeric materials with a femtosecond near IR laser source. This disorientation is promoted through the photoisomerization of the azo-dye component induced by a two-photon absorption process. We show that the resulting localized loss in second harmonic generation efficiency can be exploited in data storage applications. The low irradiation powers used allow for a recycling by reheating and repoling the films leading to a rewritable system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rau, "Photoisomerization of azobenzenes," in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC, Boca Raton, FL 1990), 2, 119-141.
  2. A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. 102, 4139-4175 (2002).
    [CrossRef] [PubMed]
  3. S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, "Stable polymeric materials for non linear optics: a review based on azobenzene systems," Prog. Polym. Sci.,  29, 45-74 (2004).
    [CrossRef]
  4. A. Donval, E. Toussaere, R. Hierle, and J. Zyss, "Polarization insensitive electro-optic polymer modulator," J. Appl. Phys. 87, 3258-3262 (2000).
    [CrossRef]
  5. W. Zhang, S. Bian, S. I. Kim, and M. G. Kuzyk, "High-efficiency holographic volume index gratings in DR1-dye-doped poly(methyl methacrylate)," Opt. Lett. 27, 1105-1107 (2002).
    [CrossRef]
  6. R. Birabassov, N. Landraud, T. V. Galstyan, A. Ritcey, C. G. Bazuin, and T. Rahem, "Thick dye-doped poly(methyl methacrylate) films for real-time holography," Appl. Opt. 37, 8264-8269 (1998).
    [CrossRef]
  7. M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
    [CrossRef]
  8. G. Xu, Q. G. Yang, J. Si., X. Liu, P. Ye, Z. Li, and Y. Shen, "Application of all-optical poling in reversible optical storage in azopolymer films," Opt. Commun. 159, 88-92 (1999).
    [CrossRef]
  9. S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, "Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories," Opt. Express 13, 505-510 (2005).
    [CrossRef] [PubMed]
  10. L. De Boni, L. Misoguti, S. C. Zilio, and C. R. Mendoça, "Degenerate two-photon absorption spectra in azoaromatic compounds," Chem. Phys. 6, 1121-1125 (2005).
    [CrossRef] [PubMed]

2005

L. De Boni, L. Misoguti, S. C. Zilio, and C. R. Mendoça, "Degenerate two-photon absorption spectra in azoaromatic compounds," Chem. Phys. 6, 1121-1125 (2005).
[CrossRef] [PubMed]

S. Bidault, J. Gouya, S. Brasselet, and J. Zyss, "Encoding multipolar polarization patterns by optical poling in polymers: towards nonlinear optical memories," Opt. Express 13, 505-510 (2005).
[CrossRef] [PubMed]

2004

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, "Stable polymeric materials for non linear optics: a review based on azobenzene systems," Prog. Polym. Sci.,  29, 45-74 (2004).
[CrossRef]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

2002

2000

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, "Polarization insensitive electro-optic polymer modulator," J. Appl. Phys. 87, 3258-3262 (2000).
[CrossRef]

1999

G. Xu, Q. G. Yang, J. Si., X. Liu, P. Ye, Z. Li, and Y. Shen, "Application of all-optical poling in reversible optical storage in azopolymer films," Opt. Commun. 159, 88-92 (1999).
[CrossRef]

1998

Bazuin, C. G.

Bian, S.

Bidault, S.

Birabassov, R.

Brasselet, S.

De Boni, L.

L. De Boni, L. Misoguti, S. C. Zilio, and C. R. Mendoça, "Degenerate two-photon absorption spectra in azoaromatic compounds," Chem. Phys. 6, 1121-1125 (2005).
[CrossRef] [PubMed]

Donval, A.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, "Polarization insensitive electro-optic polymer modulator," J. Appl. Phys. 87, 3258-3262 (2000).
[CrossRef]

Galstyan, T. V.

Gouya, J.

Hierle, R.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, "Polarization insensitive electro-optic polymer modulator," J. Appl. Phys. 87, 3258-3262 (2000).
[CrossRef]

Ishitobi, H.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Kawata, S.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Kim, S. I.

Kuzyk, M. G.

Landraud, N.

Maeda, M.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Mendoça, C. R.

L. De Boni, L. Misoguti, S. C. Zilio, and C. R. Mendoça, "Degenerate two-photon absorption spectra in azoaromatic compounds," Chem. Phys. 6, 1121-1125 (2005).
[CrossRef] [PubMed]

Misoguti, L.

L. De Boni, L. Misoguti, S. C. Zilio, and C. R. Mendoça, "Degenerate two-photon absorption spectra in azoaromatic compounds," Chem. Phys. 6, 1121-1125 (2005).
[CrossRef] [PubMed]

Natansohn, A.

A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. 102, 4139-4175 (2002).
[CrossRef] [PubMed]

Pillai, C. K. S.

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, "Stable polymeric materials for non linear optics: a review based on azobenzene systems," Prog. Polym. Sci.,  29, 45-74 (2004).
[CrossRef]

Rahem, T.

Ritcey, A.

Rochon, P.

A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. 102, 4139-4175 (2002).
[CrossRef] [PubMed]

Sekkat, Z.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Si, J.

G. Xu, Q. G. Yang, J. Si., X. Liu, P. Ye, Z. Li, and Y. Shen, "Application of all-optical poling in reversible optical storage in azopolymer films," Opt. Commun. 159, 88-92 (1999).
[CrossRef]

Toussaere, E.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, "Polarization insensitive electro-optic polymer modulator," J. Appl. Phys. 87, 3258-3262 (2000).
[CrossRef]

Tsutsumi, N.

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, "Stable polymeric materials for non linear optics: a review based on azobenzene systems," Prog. Polym. Sci.,  29, 45-74 (2004).
[CrossRef]

Xu, G.

G. Xu, Q. G. Yang, J. Si., X. Liu, P. Ye, Z. Li, and Y. Shen, "Application of all-optical poling in reversible optical storage in azopolymer films," Opt. Commun. 159, 88-92 (1999).
[CrossRef]

Yang, Q. G.

G. Xu, Q. G. Yang, J. Si., X. Liu, P. Ye, Z. Li, and Y. Shen, "Application of all-optical poling in reversible optical storage in azopolymer films," Opt. Commun. 159, 88-92 (1999).
[CrossRef]

Yesodha, S. K.

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, "Stable polymeric materials for non linear optics: a review based on azobenzene systems," Prog. Polym. Sci.,  29, 45-74 (2004).
[CrossRef]

Zhang, W.

Zilio, S. C.

L. De Boni, L. Misoguti, S. C. Zilio, and C. R. Mendoça, "Degenerate two-photon absorption spectra in azoaromatic compounds," Chem. Phys. 6, 1121-1125 (2005).
[CrossRef] [PubMed]

Zyss, J.

Appl. Opt.

Appl. Phys. Lett.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Chem. Phys.

L. De Boni, L. Misoguti, S. C. Zilio, and C. R. Mendoça, "Degenerate two-photon absorption spectra in azoaromatic compounds," Chem. Phys. 6, 1121-1125 (2005).
[CrossRef] [PubMed]

Chem. Rev.

A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. 102, 4139-4175 (2002).
[CrossRef] [PubMed]

J. Appl. Phys.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, "Polarization insensitive electro-optic polymer modulator," J. Appl. Phys. 87, 3258-3262 (2000).
[CrossRef]

Opt. Commun.

G. Xu, Q. G. Yang, J. Si., X. Liu, P. Ye, Z. Li, and Y. Shen, "Application of all-optical poling in reversible optical storage in azopolymer films," Opt. Commun. 159, 88-92 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Polym. Sci.

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, "Stable polymeric materials for non linear optics: a review based on azobenzene systems," Prog. Polym. Sci.,  29, 45-74 (2004).
[CrossRef]

Other

H. Rau, "Photoisomerization of azobenzenes," in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC, Boca Raton, FL 1990), 2, 119-141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1.

Experimental set-up based on two-photon absorption for the writing of information and on second harmonic generation for the read out. Obj: microscope objectives. Bottom: schematic view of the sample position tilted by the θ stage to maximize SHG signals.

Fig. 2.
Fig. 2.

Decay of the SHG signal for several IR irradiation intensities corresponding to 30, 60, 90, and 120 GW/cm2. Inset : SHG spectrum recorded by the nitrogen cooled camera at the output of the spectrometer.

Fig. 3.
Fig. 3.

Reconstruction of the SGH image of the sample. Top: 40µm×40µm image of the spots recorded at different laser powers. Bottom: transversal profile of the spots showing the change in SHG contrast at a constant 30 mW of mean power and for increments of 30 ms in irradiation time. The contrast varies from 50% (Hole ❶ - t=30 ms) to 76 % (Hole ❻ - t=180 ms). The width of the holes is constant and equal to 2.8 µm at FWHM.

Fig. 4.
Fig. 4.

A 200 µm×200 µm area after patterning with a step of 10 µm at incident powers of 50 mW (left part) and 100 mW (right part), open shutter time 200 ms: a) SHG picture taken with 4 mW at 800 nm, scan speed of 10 µm/s, acquisition time of 40 ms, inter-line spacing 4 µm; b) center 100 µm×100 µm area, same parameters as in a) except for a scan speed of 15 µm/s and an inter-line spacing of 1 µm; c) center 40 µm×45 µm area of b) with a scan speed of 15 µm/s and an inter-line spacing of 0.5 µm ; d) magnified 3D view of the lower right hand corner of b).

Fig. 5.
Fig. 5.

High quality sample patterned where the smallest distance between two adjacent points (column on the left hand side) is about 2 µm (writing power 23 mW, exposure time 200 ms, reading power 1.8 mW, scanning speed 10 µm/s).

Fig. 6.
Fig. 6.

Writing/erasing/rewriting cycle. a) SHG image taken at 3 mW, 785 nm, 10 µm/s, of a grating (50 lines of 50 µm with a pitch of 4µm) written at P=10 mW, 800 nm (a border burned in at 105 mW serves as a marker); b) microscope image of the same area; c) SHG scan after repoling; d) SHG scan after rewriting 20 lines of 50 µm with a pitch of 10 µm.

Metrics