Abstract

We apply the recently developed theory of frequency generation by mixing of solitons and dispersive waves [Phys. Rev. E 72, 016619 (2005)] to explain the observed formation, quasi-trapping and frequency shift of the spectral peaks at the blue edge of supercontinua generated in silica-core photonic crystal fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
    [CrossRef]
  2. S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006) and references therein.
    [CrossRef]
  3. P. A. Champert, S. V. Popov, and J. R. Taylor, "Generation of multiwatt, broadband continua in holey fibers," Opt. Lett. 27, 122-124 (2002).
    [CrossRef]
  4. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, "Crosscorrelation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
    [PubMed]
  5. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  6. A. V. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
    [CrossRef]
  7. D.V. Skryabin, F. Luan, J.C. Knight, and P.St.J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  8. F. Biancalana, D.V. Skryabin, A.V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
    [CrossRef]
  9. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
    [CrossRef] [PubMed]
  10. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004).
    [CrossRef] [PubMed]
  11. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
    [CrossRef]
  12. D. V. Skryabin and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
    [CrossRef]
  13. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004).
    [CrossRef] [PubMed]
  14. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  15. P. K. A. Wai, H. H. Chen, and Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426 (1990).
    [CrossRef] [PubMed]
  16. J. N. Elgin, "Soliton propagation in an optical fiber with 3rd-order dispersion," Opt. Lett. 17, 1409-1410 (1992).
    [CrossRef] [PubMed]
  17. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  18. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibres with higher order dispersion," Opt. Lett. 29, 2411-2413 (2004).
    [CrossRef] [PubMed]
  19. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
    [CrossRef] [PubMed]
  20. A. Efimov, A. Taylor, A. V. Yulin, D. V. Skryabin, J. C. Knight, "Phase-sensitive scattering of a continuous wave on a soliton," Opt. Lett. 31, 1624-1626 (2006).
    [CrossRef] [PubMed]
  21. M. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005).
    [CrossRef] [PubMed]
  22. N. Nishizawa and T. Goto, "Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength," Opt. Lett. 27, 152-154 (2002).
    [CrossRef]
  23. N. Nishizawa and T. Goto, "Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength," Opt. Express 10, 1151-1160 (2002).
    [PubMed]
  24. N. Nishizawa and T. Goto, "Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength," Opt. Express 11, 359-365 (2003).
    [CrossRef] [PubMed]
  25. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, "Optical wave breaking of pulses in nonlinear optical fibers," Opt. Lett. 10, 457-459 (1985).
    [CrossRef] [PubMed]
  26. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
    [CrossRef] [PubMed]
  27. G. Genty, M. Lehtonen, and H. Ludvigsen, "Route to broadband blue-light generation in microstructured fibers," Opt. Lett. 30, 756-758 (2005).
    [CrossRef] [PubMed]

2006 (2)

2005 (4)

M. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Route to broadband blue-light generation in microstructured fibers," Opt. Lett. 30, 756-758 (2005).
[CrossRef] [PubMed]

D. V. Skryabin and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
[CrossRef]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

2004 (6)

2003 (2)

N. Nishizawa and T. Goto, "Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength," Opt. Express 11, 359-365 (2003).
[CrossRef] [PubMed]

D.V. Skryabin, F. Luan, J.C. Knight, and P.St.J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

2002 (7)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

P. A. Champert, S. V. Popov, and J. R. Taylor, "Generation of multiwatt, broadband continua in holey fibers," Opt. Lett. 27, 122-124 (2002).
[CrossRef]

N. Nishizawa and T. Goto, "Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength," Opt. Lett. 27, 152-154 (2002).
[CrossRef]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
[CrossRef]

N. Nishizawa and T. Goto, "Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength," Opt. Express 10, 1151-1160 (2002).
[PubMed]

J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, "Crosscorrelation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
[PubMed]

2000 (1)

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
[CrossRef]

1995 (1)

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

1992 (1)

1990 (1)

P. K. A. Wai, H. H. Chen, and Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426 (1990).
[CrossRef] [PubMed]

1985 (1)

Akhmediev, N.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Bang, O.

Biancalana, F.

Champert, P. A.

Chen, H. H.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426 (1990).
[CrossRef] [PubMed]

Coen, S.

Cristiani, I.

Degiorgio, V.

Dudley, J.

Dudley, J. M.

Efimov, A.

Eggleton, B. J.

Elgin, J. N.

Falk, P.

Frosz, M.

Genty, G.

George, A. K.

Goto, T.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Grossard, N.

Gu, X.

Hansch, T. W.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
[CrossRef]

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
[CrossRef]

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
[CrossRef]

Hori, T.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Husakou, A. V.

Johnson, A. M.

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Joly, N. Y.

Karlsson, M.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Kimmel, M.

Knight, J. C.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

A. Efimov, A. Taylor, A. V. Yulin, D. V. Skryabin, J. C. Knight, "Phase-sensitive scattering of a continuous wave on a soliton," Opt. Lett. 31, 1624-1626 (2006).
[CrossRef] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
[CrossRef]

Knight, J.C.

D.V. Skryabin, F. Luan, J.C. Knight, and P.St.J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Kudlinski, A.

Lee, Y. C.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426 (1990).
[CrossRef] [PubMed]

Lehtonen, M.

Luan, F.

D.V. Skryabin, F. Luan, J.C. Knight, and P.St.J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Maillotte, H.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Nishizawa, N.

O’Shea, P.

Omenetto, F. G.

Popov, S. V.

Provino, L.

Rulkov, A. B.

Russell, P.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Russell, P. St. J.

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004).
[CrossRef] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibres with higher order dispersion," Opt. Lett. 29, 2411-2413 (2004).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
[CrossRef]

Russell, P.St.J.

D.V. Skryabin, F. Luan, J.C. Knight, and P.St.J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Skryabin, D. V.

Skryabin, D.V.

F. Biancalana, D.V. Skryabin, A.V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
[CrossRef]

D.V. Skryabin, F. Luan, J.C. Knight, and P.St.J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Stolen, R. H.

Tartara, L.

Taylor, A.

Taylor, A. J.

Taylor, J. R.

Tediosi, R.

Tomlinson, W. J.

Travers, J. C.

Trebino, R.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
[CrossRef]

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
[CrossRef]

Wai, P. K. A.

P. K. A. Wai, H. H. Chen, and Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426 (1990).
[CrossRef] [PubMed]

Windeler, R.

Windeler, R. S.

Xu, L.

Yoshida, M.

Yulin, A. V.

Yulin, A.V.

F. Biancalana, D.V. Skryabin, A.V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Zeek, E.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (3)

Opt. Express (8)

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004).
[CrossRef] [PubMed]

M. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, "Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength," Opt. Express 10, 1151-1160 (2002).
[PubMed]

J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, "Crosscorrelation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
[PubMed]

N. Nishizawa and T. Goto, "Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength," Opt. Express 11, 359-365 (2003).
[CrossRef] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. A (2)

P. K. A. Wai, H. H. Chen, and Y. C. Lee, "Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers," Phys. Rev. A 41, 426 (1990).
[CrossRef] [PubMed]

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (2)

D. V. Skryabin and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
[CrossRef]

F. Biancalana, D.V. Skryabin, A.V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 002264 (2000).
[CrossRef]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Science (1)

D.V. Skryabin, F. Luan, J.C. Knight, and P.St.J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other (1)

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122-147 (2006) and references therein.
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (1838 KB)     
» Media 2: MOV (2125 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a,b) Evolution of the spectrum with propagation distance: (a) Experimental measurements, (b) Modeling. Black dashed line in (a) shows the zero GVD wavelength. (c) Group index as function of wavelength. First pair (left most) of the full (green) and dashed (blue) lines show approximate values of the group index for the colliding soliton (dashed line) and dispersive wave (full line) initiating sequence of the four-wave mixing events. Subsequent lines for the dispersive waves are calculated from Eq. (3) and for the soliton, from its known deceleration rate. The decrease in height of the shaded triangles with group index show the decreasing frequency difference between pump and signal waves with propagation length, while the decreasing separation of the solid and broken lines shows the transition to the intra-pulse regime. ‘CR’ is for Cherenkov radiation.

Fig. 2.
Fig. 2.

XFROG spectrograms calculated for various values of z. Dashed vertical line shows the zero GVD wavelength. (a) z=3cm, formation of the two spectral lobs by SPM, (b) z=9cm, one of the spectral lobs shifts to the anomalous GVD range, (c) z=20cm Onset of the soliton formation and blue radiation, (d) z=50cm, Primary band of the blue radiation due to interpulse FWM and Cherenokov radiation is well formed (e) z=1.3m and (f) z=2m show formation of the secondary FWMband associated with intrapulse FWM and radiation trapping. (a)–(d) are plotted on the usual scale and (e),(f) on the logarithmic one.

Fig. 3.
Fig. 3.

(a) Animation of the evolution of the XFROGspectrogram |I(t,ω)| with propagation distance z (1.79 Mb); (b) The same as (a), but for log |I(t,ω)| (2.07 Mb).

Fig. 4.
Fig. 4.

(a1,b1) XFROG spectrograms (|I(t,ω)|). (a2,b2) Spectra (non-logarithmic scale). Inset in (a2) shows the part of the spectrum on logarithmic scale. The green shaded area in (a2) corresponds to the soliton frequencies used in Eqs. (2), (3). The grey shaded area in (a2)shows the corresponding range of the FWM signal and the dashed area shows the range of the Cherenkov radiation (CR). The pump wavelength is fixed at λ p =767nm. The blue shaded area in (b2) marks the range of the frequencies used as pump frequencies in Eq. (3) and grey shaded area shows the range of the corresponding FWM signal. The soliton wavelength in (b2,3) is fixed at 1040nm. (a3), (b3) show the wavenumber matching diagrams for selected values of the frequencies. Black lines correspond to β(δ). Green lines correspond to the right hand side of Eq. (2) and the red ones to the right hand side of Eq. (3).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ z i β ̂ ( i t ) ] A = i γ ( 1 θ ) A 2 A + i γ θ A 0 d t R ( t ) A ( t t , z ) 2 .
β ( δ ) = β s o l ( δ ) .
β ( δ ) = β ( δ p ) + β sol ( δ ) β sol ( δ p ) ,
β ( δ ) = β ( δ p ) + β sol ( δ ) + β sol ( δ p ) .

Metrics