Abstract

Conventional macro objectives are generally used as relay systems in the capture stage in Integral Imaging. This choice leads to microimage overlap and shift, which produce undesirable effects on the reconstructed three-dimensional images, such as loss in resolution and image distortions. In this paper, we propose and demonstrate a new architecture for the capture stage. Our method uses a telecentric relay system to overcome the conventional drawbacks. Experiments conducted with our system show an important improvement in the quality of displayed images.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
    [Crossref]
  2. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, WA, 2001).
  3. B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, Berlin, 2002).
  4. K. Iizuka, “Welcome to the wonderful world of 3D: Introduction, principles and history,” Opt. Photon. News 17, 42–51 (2006).
    [Crossref]
  5. M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).
  6. C. B. Burckhardt, “Optimum parameters and resolution limitation of Integral Photography,” J. Opt. Soc. Am. 58, 71–76 (1968).
    [Crossref]
  7. F. Okano, H. Hoshino, J. Arai, and I. Yayuma, “Real time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [Crossref] [PubMed]
  8. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [Crossref]
  9. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens array,” Appl. Opt. 43, 5806–5813 (2004).
    [Crossref] [PubMed]
  10. R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237–5242 (2004).
    [Crossref] [PubMed]
  11. M. Hain, W. von Spiegel, M. Schmiedchen, T. Tschudi, and B. Javidi, “3D integral imaging using diffractive Fresnel lens array,” Opt. Express 13, 315–326 (2005).
    [Crossref] [PubMed]
  12. R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools,” J. Disp. Technol. 1, 321–327 (2005).
    [Crossref]
  13. H. Yamamoto, M. Kouno, S. Muguruma, Y. Hayasaki, Y. Nagai, Y. Shimizu, and N. Nishida, “Enlargement of viewing area of stereoscopic full-color LED display by use of a parallax barrier,” Appl. Opt. 41, 6907–6919 (2002).
    [Crossref] [PubMed]
  14. J.-Y Son, V. Saveljev, J.-S. Kim, S.-S. Kim, and B. Javidi, “Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates.” Appl. Opt. 43, 4985–4992 (2004).
    [Crossref] [PubMed]
  15. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping.” Opt. Express 13, 9175–9180 (2005).
    [Crossref] [PubMed]
  16. J.-S Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of non-stationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [Crossref]
  17. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
    [Crossref]
  18. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734–2736 (2004).
    [Crossref] [PubMed]
  19. H. Liao, M. Iwahara, H. Nobuhiko, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
    [Crossref] [PubMed]
  20. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
    [Crossref] [PubMed]
  21. F. Okano, J. Arai, and M. Okui, “Amplified optical window for three-dimensional images,” Opt. Lett. 31, 1842–1844 (2006).
    [Crossref] [PubMed]
  22. N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens array,” Opt. Eng. 33, 3624–3633 (1994).
    [Crossref]
  23. J. Arai, M. Okui, and F. Okano, “Image properties of microlens arrays for integral imaging systems,” in Stereoscopic Displays and Virtual Reality Systems XII, A. J. Woods, N. A. Dodgson, J. O. Merritt, M. T. Bolas, and I. E. McDowall, eds., Proc. SPIE 6055, 605511 (2006).
    [Crossref]
  24. Y.-W. Song, B. Javidi, and F. Jin, “3D object scaling in integral imaging display byvarying the spatial ray sampling rate,” Opt. Express 13, 3242–3251 (2005).
    [Crossref] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999), pg. 200.
  26. H. Arimoto and B. Javidi, “Integral 3D imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
    [Crossref]

2006 (3)

K. Iizuka, “Welcome to the wonderful world of 3D: Introduction, principles and history,” Opt. Photon. News 17, 42–51 (2006).
[Crossref]

J. Arai, M. Okui, and F. Okano, “Image properties of microlens arrays for integral imaging systems,” in Stereoscopic Displays and Virtual Reality Systems XII, A. J. Woods, N. A. Dodgson, J. O. Merritt, M. T. Bolas, and I. E. McDowall, eds., Proc. SPIE 6055, 605511 (2006).
[Crossref]

F. Okano, J. Arai, and M. Okui, “Amplified optical window for three-dimensional images,” Opt. Lett. 31, 1842–1844 (2006).
[Crossref] [PubMed]

2005 (6)

2004 (5)

2002 (2)

2001 (1)

1998 (1)

1997 (1)

1994 (1)

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens array,” Opt. Eng. 33, 3624–3633 (1994).
[Crossref]

1980 (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[Crossref]

1968 (1)

1908 (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Arai, J.

Arimoto, H.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999), pg. 200.

Brewin, M.

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens array,” Opt. Eng. 33, 3624–3633 (1994).
[Crossref]

Burckhardt, C. B.

Choi, H.

Davies, N.

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens array,” Opt. Eng. 33, 3624–3633 (1994).
[Crossref]

Dohi, T.

Hain, M.

Hayasaki, Y.

Hong, J.

Hoshino, H.

Iizuka, K.

K. Iizuka, “Welcome to the wonderful world of 3D: Introduction, principles and history,” Opt. Photon. News 17, 42–51 (2006).
[Crossref]

Iwahara, M.

Jang, J.-S

Javidi, B.

R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools,” J. Disp. Technol. 1, 321–327 (2005).
[Crossref]

M. Hain, W. von Spiegel, M. Schmiedchen, T. Tschudi, and B. Javidi, “3D integral imaging using diffractive Fresnel lens array,” Opt. Express 13, 315–326 (2005).
[Crossref] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[Crossref]

Y.-W. Song, B. Javidi, and F. Jin, “3D object scaling in integral imaging display byvarying the spatial ray sampling rate,” Opt. Express 13, 3242–3251 (2005).
[Crossref] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping.” Opt. Express 13, 9175–9180 (2005).
[Crossref] [PubMed]

J.-Y Son, V. Saveljev, J.-S. Kim, S.-S. Kim, and B. Javidi, “Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates.” Appl. Opt. 43, 4985–4992 (2004).
[Crossref] [PubMed]

R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237–5242 (2004).
[Crossref] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens array,” Appl. Opt. 43, 5806–5813 (2004).
[Crossref] [PubMed]

J.-S Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of non-stationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
[Crossref]

H. Arimoto and B. Javidi, “Integral 3D imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
[Crossref]

Jin, F.

Jung, S.

Kim, H.-R.

Kim, J.

Kim, J.-S.

Kim, S.-S.

Kim, Y.

Kouno, M.

Lee, B.

Lee, S.-D.

Liao, H.

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Martínez-Corral, M.

Martínez-Cuenca, R.

McCormick, M.

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens array,” Opt. Eng. 33, 3624–3633 (1994).
[Crossref]

Min, S.-W.

Muguruma, S.

Nagai, Y.

Nishida, N.

Nobuhiko, H.

Okano, F.

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[Crossref]

Okui, M.

J. Arai, M. Okui, and F. Okano, “Image properties of microlens arrays for integral imaging systems,” in Stereoscopic Displays and Virtual Reality Systems XII, A. J. Woods, N. A. Dodgson, J. O. Merritt, M. T. Bolas, and I. E. McDowall, eds., Proc. SPIE 6055, 605511 (2006).
[Crossref]

F. Okano, J. Arai, and M. Okui, “Amplified optical window for three-dimensional images,” Opt. Lett. 31, 1842–1844 (2006).
[Crossref] [PubMed]

Park, J.-H.

Saavedra, G.

Saveljev, V.

Schmiedchen, M.

Shimizu, Y.

Son, J.-Y

Song, Y.-W.

Tschudi, T.

von Spiegel, W.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999), pg. 200.

Yamamoto, H.

Yayuma, I.

Yuyama, I.

Appl. Opt. (6)

J. Disp. Technol. (1)

R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools,” J. Disp. Technol. 1, 321–327 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. (Paris) (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Opt. Eng. (1)

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens array,” Opt. Eng. 33, 3624–3633 (1994).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Photon. News (1)

K. Iizuka, “Welcome to the wonderful world of 3D: Introduction, principles and history,” Opt. Photon. News 17, 42–51 (2006).
[Crossref]

Proc. IEEE (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[Crossref]

Proc. SPIE (1)

J. Arai, M. Okui, and F. Okano, “Image properties of microlens arrays for integral imaging systems,” in Stereoscopic Displays and Virtual Reality Systems XII, A. J. Woods, N. A. Dodgson, J. O. Merritt, M. T. Bolas, and I. E. McDowall, eds., Proc. SPIE 6055, 605511 (2006).
[Crossref]

Other (3)

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999), pg. 200.

S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, WA, 2001).

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, Berlin, 2002).

Supplementary Material (2)

» Media 1: GIF (595 KB)     
» Media 2: GIF (790 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic configuration of pickup and display of a InI system.

Fig. 2.
Fig. 2.

Scheme of conventional pickup stage of an InI. The relay optics allows the acquisition of higher number of microimages. The micro-windows are smaller than the elemental cells, and shifted towards the optical axis of the macro.

Fig. 3.
Fig. 3.

Scheme of proposed pickup stage. The telecentric relay system allows the micro-windows to match the elemental-cell grid.

Fig. 4.
Fig. 4.

Experimental setup. The axial distances are a=100 mm, z 1=-60 mm and z 2=50 mm.

Fig. 5.
Fig. 5.

Set of 2×2 microimages recorded by using: (a) the telecentric relay system; (b) the conventional relay system.

Fig. 6.
Fig. 6.

Sequence of 32 microimages obtained by using the telecentric relay (left movie) and the conventional relay (right movie). (Video file of 0.79 Mb)

Fig. 7.
Fig. 7.

Reconstructed images calculated from the microimages captured with the telecentric pickup (left movie) and with the conventional pickup (right movie). (Video file of 0.6 Mb).

Metrics