Abstract

We propose, analyze and numerically illustrate a photonic-based technique for waveform generation of electrical signals approaching the 50 GHz bandwidth with time apertures as large as a few nanoseconds, by low-frequency, up to 2 GHz, electro-optic phase modulation of time-stretched optical pulses. Synthesis of the electrical waveform relies on phase-to-amplitude conversion of the modulated signal by a group delay dispersion circuit designed to behave as a transversal filter with N taps. Although arbitrary waveform generation capabilities are limited, a wide variety of user-defined signals are numerically demonstrated by appropriately designing the low-frequency signal driving the electro-optical modulator. Frequency upshifting is controlled by the chirp of the stretched pulse which provides an additional degree of freedom. Finally, optical-to-electrical conversion allows for the user-defined electrical waveform. Simulations are given for square waveform generation demonstrating the high resolution and wide-band capabilities of the technique.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper

J. D. McKinney, D. E. Leaird, and A. M. Weiner
Opt. Lett. 27(15) 1345-1347 (2002)

Coherent Fourier transform electrical pulse shaping

Shijun Xiao and Andrew M. Weiner
Opt. Express 14(7) 3073-3082 (2006)

Picosecond flat-top pulse generation by low-bandwidth electro-optic sinusoidal phase modulation

Naum K. Berger, Boris Levit, Baruch Fischer, and José Azaña
Opt. Lett. 33(2) 125-127 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave Signals,” J. Lightwave Technol. 23, 702–723 (2005).
    [Crossref]
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
    [Crossref]
  3. J. U. Kang, M. Y. Frankel, and R. D. Esman, “Demonstration of microwave frequency shifting by use of a highly chirped mode-locked fiber laser,” Opt. Lett. 23, 1188–1190 (1998).
    [Crossref]
  4. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).
    [Crossref]
  5. M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photon, Technol. Lett. 16, 1155–1157 (2004).
    [Crossref]
  6. A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 660–662 (2005).
    [Crossref]
  7. O. Levinson and M. Horowitz, “Generation of complex microwave and millimetre-wave pulses using dispersion and Kerr effect in optical fiber systems,” J. Lightwave Technol. 21, 1179–1187 (2003).
    [Crossref]
  8. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27, 1345–1347 (2002).
    [Crossref]
  9. J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, “Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping,” J. Lightwave Technol. 21, 3020–3028 (2003).
    [Crossref]
  10. S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett. 16, 1936–1938 (2004).
    [Crossref]
  11. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
    [Crossref]
  12. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microwave Wirel. Compon. Lett 15, 226–228 (2005).
    [Crossref]
  13. S. Xiao and A. M. Weiner, “Coherent Fourier transform electrical pulse shaping,” Opt. Express 14, 3073–3082 (2006).
    [Crossref] [PubMed]
  14. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18, 823–825 (2006).
    [Crossref]
  15. J. Azaña, N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Frequency shifting of microwave signals by use of a general temporal self-imaging (Talbot) effect in optical fibers,” Opt. Lett. 29, 2849–2851 (2004).
    [Crossref]
  16. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
    [Crossref]
  17. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: Theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
    [Crossref]
  18. J. Westerholm, J. Turunen, and J. Huttunen, “Fresnel diffraction in fractional Talbot planes: a new formulation,” J. Opt. Soc. Am. A 11, 1283–1290 (1994).
    [Crossref]
  19. V. Torres-Company, J. Lancis, and P. Andrés, “Unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light,” Opt. Express 14, 3171–3180 (2006).
    [Crossref] [PubMed]
  20. V. Arrizón and J. Ojeda-Castañeda, “Irradiance at Fresnel planes of a phase grating,” J. Opt. Soc. Am. A 9, 1801–1806 (1992).
    [Crossref]
  21. V. Arrizón and J. Ojeda-Castañeda, “Phase grating- analytical formulas for the near-field,” Microwave Opt. Technol. Lett. 5, 483–486 (1992).
    [Crossref]
  22. J. Lancis, J. Caraquitena, P. Andrés, and M. A. Muriel, “Temporal self-imaging effect for chirped laser pulse sequences: repetition rate and duty cycle tunability,” Opt. Commun. 253, 156–163 (2005).
    [Crossref]
  23. J. Azaña and L. R. Chen, “General temporal self-imaging phenomena,” J. Opt. Soc. Am. B 20, 1447–1458 (2003).
    [Crossref]

2006 (4)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
[Crossref]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18, 823–825 (2006).
[Crossref]

S. Xiao and A. M. Weiner, “Coherent Fourier transform electrical pulse shaping,” Opt. Express 14, 3073–3082 (2006).
[Crossref] [PubMed]

V. Torres-Company, J. Lancis, and P. Andrés, “Unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light,” Opt. Express 14, 3171–3180 (2006).
[Crossref] [PubMed]

2005 (4)

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave Signals,” J. Lightwave Technol. 23, 702–723 (2005).
[Crossref]

J. Lancis, J. Caraquitena, P. Andrés, and M. A. Muriel, “Temporal self-imaging effect for chirped laser pulse sequences: repetition rate and duty cycle tunability,” Opt. Commun. 253, 156–163 (2005).
[Crossref]

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microwave Wirel. Compon. Lett 15, 226–228 (2005).
[Crossref]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 660–662 (2005).
[Crossref]

2004 (3)

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett. 16, 1936–1938 (2004).
[Crossref]

M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photon, Technol. Lett. 16, 1155–1157 (2004).
[Crossref]

J. Azaña, N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Frequency shifting of microwave signals by use of a general temporal self-imaging (Talbot) effect in optical fibers,” Opt. Lett. 29, 2849–2851 (2004).
[Crossref]

2003 (4)

2002 (2)

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).
[Crossref]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27, 1345–1347 (2002).
[Crossref]

2001 (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: Theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

1998 (1)

1996 (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

1994 (1)

1992 (2)

V. Arrizón and J. Ojeda-Castañeda, “Phase grating- analytical formulas for the near-field,” Microwave Opt. Technol. Lett. 5, 483–486 (1992).
[Crossref]

V. Arrizón and J. Ojeda-Castañeda, “Irradiance at Fresnel planes of a phase grating,” J. Opt. Soc. Am. A 9, 1801–1806 (1992).
[Crossref]

Abeles, J. H.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).
[Crossref]

Andrés, P.

V. Torres-Company, J. Lancis, and P. Andrés, “Unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light,” Opt. Express 14, 3171–3180 (2006).
[Crossref] [PubMed]

J. Lancis, J. Caraquitena, P. Andrés, and M. A. Muriel, “Temporal self-imaging effect for chirped laser pulse sequences: repetition rate and duty cycle tunability,” Opt. Commun. 253, 156–163 (2005).
[Crossref]

Arrizón, V.

V. Arrizón and J. Ojeda-Castañeda, “Irradiance at Fresnel planes of a phase grating,” J. Opt. Soc. Am. A 9, 1801–1806 (1992).
[Crossref]

V. Arrizón and J. Ojeda-Castañeda, “Phase grating- analytical formulas for the near-field,” Microwave Opt. Technol. Lett. 5, 483–486 (1992).
[Crossref]

Azaña, J.

Berger, N. K.

Capmany, J.

Caraquitena, J.

J. Lancis, J. Caraquitena, P. Andrés, and M. A. Muriel, “Temporal self-imaging effect for chirped laser pulse sequences: repetition rate and duty cycle tunability,” Opt. Commun. 253, 156–163 (2005).
[Crossref]

Chen, L. R.

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

Delfyett, P. J.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).
[Crossref]

DePriest, C. M.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).
[Crossref]

Esman, R. D.

Fischer, B.

Frankel, M. Y.

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

Horowitz, M.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 660–662 (2005).
[Crossref]

O. Levinson and M. Horowitz, “Generation of complex microwave and millimetre-wave pulses using dispersion and Kerr effect in optical fiber systems,” J. Lightwave Technol. 21, 1179–1187 (2003).
[Crossref]

Huttunen, J.

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

Kang, J. U.

Lancis, J.

V. Torres-Company, J. Lancis, and P. Andrés, “Unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light,” Opt. Express 14, 3171–3180 (2006).
[Crossref] [PubMed]

J. Lancis, J. Caraquitena, P. Andrés, and M. A. Muriel, “Temporal self-imaging effect for chirped laser pulse sequences: repetition rate and duty cycle tunability,” Opt. Commun. 253, 156–163 (2005).
[Crossref]

Leaird, D. E.

Levinson, O.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 660–662 (2005).
[Crossref]

O. Levinson and M. Horowitz, “Generation of complex microwave and millimetre-wave pulses using dispersion and Kerr effect in optical fiber systems,” J. Lightwave Technol. 21, 1179–1187 (2003).
[Crossref]

Levit, B.

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microwave Wirel. Compon. Lett 15, 226–228 (2005).
[Crossref]

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

McKinney, J. D.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microwave Wirel. Compon. Lett 15, 226–228 (2005).
[Crossref]

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett. 16, 1936–1938 (2004).
[Crossref]

J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, “Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping,” J. Lightwave Technol. 21, 3020–3028 (2003).
[Crossref]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27, 1345–1347 (2002).
[Crossref]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
[Crossref]

M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photon, Technol. Lett. 16, 1155–1157 (2004).
[Crossref]

Muriel, M. A.

J. Lancis, J. Caraquitena, P. Andrés, and M. A. Muriel, “Temporal self-imaging effect for chirped laser pulse sequences: repetition rate and duty cycle tunability,” Opt. Commun. 253, 156–163 (2005).
[Crossref]

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: Theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

Ojeda-Castañeda, J.

V. Arrizón and J. Ojeda-Castañeda, “Phase grating- analytical formulas for the near-field,” Microwave Opt. Technol. Lett. 5, 483–486 (1992).
[Crossref]

V. Arrizón and J. Ojeda-Castañeda, “Irradiance at Fresnel planes of a phase grating,” J. Opt. Soc. Am. A 9, 1801–1806 (1992).
[Crossref]

Ortega, B.

Pastor, D.

Sales, S.

Seo, D.

Shen, M.

M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photon, Technol. Lett. 16, 1155–1157 (2004).
[Crossref]

Smulakovsky, V.

Stepanov, S.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 660–662 (2005).
[Crossref]

Torres-Company, V.

Turpin, T.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).
[Crossref]

Turunen, J.

Weiner, A. M.

S. Xiao and A. M. Weiner, “Coherent Fourier transform electrical pulse shaping,” Opt. Express 14, 3073–3082 (2006).
[Crossref] [PubMed]

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microwave Wirel. Compon. Lett 15, 226–228 (2005).
[Crossref]

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett. 16, 1936–1938 (2004).
[Crossref]

J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, “Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping,” J. Lightwave Technol. 21, 3020–3028 (2003).
[Crossref]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27, 1345–1347 (2002).
[Crossref]

Westerholm, J.

Xiao, S.

S. Xiao and A. M. Weiner, “Coherent Fourier transform electrical pulse shaping,” Opt. Express 14, 3073–3082 (2006).
[Crossref] [PubMed]

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett. 16, 1936–1938 (2004).
[Crossref]

Yao, J.

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18, 823–825 (2006).
[Crossref]

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

Yilmaz, T.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).
[Crossref]

Zeitouny, A.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 660–662 (2005).
[Crossref]

Zeng, F.

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18, 823–825 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: Theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

IEEE Microwave Wirel. Compon. Lett (1)

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microwave Wirel. Compon. Lett 15, 226–228 (2005).
[Crossref]

IEEE Photon, Technol. Lett. (1)

M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photon, Technol. Lett. 16, 1155–1157 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (5)

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 660–662 (2005).
[Crossref]

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).
[Crossref]

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett. 16, 1936–1938 (2004).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18, 823–825 (2006).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

V. Arrizón and J. Ojeda-Castañeda, “Phase grating- analytical formulas for the near-field,” Microwave Opt. Technol. Lett. 5, 483–486 (1992).
[Crossref]

Opt. Commun. (1)

J. Lancis, J. Caraquitena, P. Andrés, and M. A. Muriel, “Temporal self-imaging effect for chirped laser pulse sequences: repetition rate and duty cycle tunability,” Opt. Commun. 253, 156–163 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup under study
Fig. 2.
Fig. 2. In solid line, results of computer simulation for square-wave-type burst generation with nanosecond duration. For comparison, the case when aperture effects are neglected is also plotted in the same figure by means of a dashed line.
Fig. 3.
Fig. 3. Results of computer simulation for 40 GHz microwave tone burst generation from triangular phase modulation at 2GHz.
Fig. 4.
Fig. 4. Square-wave-type pulse train generation with variable duty cycle: a) the EOPM is driven with a serrodyne phase function and the LCFG behaves as a transversal filter with 4 taps; b) the EOPM is driven with a binary signal and the LCFG behaves as a 3 taps transversal filter.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

U in ( t ) = U o exp ( t 2 4 σ 2 ( z ) ) exp ( j t 2 2 C ( z ) ) .
U in + ( t ) = U o exp ( t 2 4 σ 2 ( z ) ) exp ( j t 2 2 C ( z ) ) exp [ j V ( t ) ] .
H ( ω ) = exp [ j Φ 1 ( ω ω o ) ] exp [ j Φ 2 ( ω ω o ) 2 2 ] .
U out ( τ , Φ 2 ) = exp ( j τ 2 2 Φ 2 ) exp ( j τ 2 2 Φ 2 ) U in + ( τ ) exp ( j τ τ Φ 2 ) d τ .
U in + ( t ) = U o exp ( j t 2 2 β 2 z ) { g o ( t ) * n = δ ( t nT ) } .
g o ( t ) = { exp [ j V ( t ) ] T 2 t T 2 0 otherwise .
U out ( M τ , Φ 2 ) = U o exp ( j M 2 τ 2 2 ( β 2 z + Φ 2 ) ) { g o ( τ ) * Δ ( τ ) } ,
M = 1 + Φ 2 β 2 z and Δ ( τ ) = n = δ ( τ nT ) * exp [ j τ 2 2 ( 1 Φ 2 + 1 β 2 z ) ] .
( 1 Φ 2 + 1 β 2 z ) 1 = P N Φ 2 T ,
Φ 2 = β 2 z Φ 2 T P N β 2 z Φ 2 T P N .
M = β 2 z β 2 z Φ 2 T P N and Δ ( τ ) = 1 T n = exp ( j 2 π n 2 P N ) exp ( j 2 π n τ T ) .
U out ( M τ , Φ 2 = β 2 z Φ 2 T P N β 2 z Φ 2 T P N ) U o L = 0 N 1 G ( L , N , P ) exp [ j V ( τ LT N ) ] ,
G ( L , N , P ) = 1 N q = 0 N 1 exp [ j 2 π q N ( L q P ) ] .
I out ( M τ , Φ 2 = β 2 z Φ 2 T 4 β 2 z Φ 2 T ) = U o 2 { 1 sin [ V ( τ T 2 ) V ( τ ) ] } .
I out ( M τ , Φ 2 = β 2 z Φ 2 T 3 β 2 z Φ 2 T ) = U o 2 { 1 + 2 3 cos [ V ( τ T 3 ) V ( τ 2 T 3 ) ] 2 3 sin [ V ( τ ) V ( τ T 3 ) + π 6 ] 2 3 sin [ V ( τ ) V ( τ 2 T 3 ) + π 6 ] } .
U out , z ( τ , Φ 2 = Φ 2 T P N ) U o L = 0 N 1 G ( L , N , P ) exp [ j V ( τ LT N ) ] ,
V ( t ) = { π T t 0 t T 2 π T t + π T 2 t T .
V ( t ) = π T t 0 t T ,
V ( t ) = { 2 π 3 0 t T 3 0 otherwise ,

Metrics