Abstract

The symmetry of cladding modes excited in microbend and arc-induced long-period fiber gratings is investigated. An optimization technique is developed to determine the fiber parameters and to associate grating resonances with cladding modes of a particular symmetry. Using this optimization procedure, we show that the gratings induced in a standard fiber by arc discharges and microbends couple light to the antisymmetric cladding modes. In the case of a boron-germanium codoped fiber, the cladding modes excited by arc-induced gratings are found to be symmetric. Measurements of the near-field intensity distribution of cladding modes confirm the mode symmetry ascertained by the optimization technique.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. V. Ivanov, S. A. Nikitov, and Yu. V. Gulyaev, "Cladding modes of optical fibers: properties and applications," Physics-Uspekhi 49, 175-202 (2006).
    [CrossRef]
  2. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  3. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001).
    [CrossRef]
  4. F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. Dianov, H. G. Limberger, and R. P. Salathe, "Stress profiling of arc-induced long period fiber gratings," J. Lightwave Technol. 23, 3947-3953 (2005).
    [CrossRef]
  5. G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fibre gratings," Opt. Commun. 220, 111-118 (2003).
    [CrossRef]
  6. S. Kim, Y. Jeong, S. Kim, J. Kwon, N. Park, and B. Lee, "Control of the characteristics of a long-period grating by cladding etching," Appl. Opt. 39, 2038-2042 (2000).
    [CrossRef]
  7. J. W. Fleming, "Dispersion in GeO2-SiO2 glasses," Appl. Opt. 23, 4486-4493 (1984).
    [CrossRef] [PubMed]
  8. G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
    [CrossRef]
  9. G. Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
    [CrossRef]

2006 (2)

O. V. Ivanov, S. A. Nikitov, and Yu. V. Gulyaev, "Cladding modes of optical fibers: properties and applications," Physics-Uspekhi 49, 175-202 (2006).
[CrossRef]

G. Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

2005 (1)

2004 (1)

G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

2003 (2)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fibre gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

2001 (1)

2000 (1)

1984 (1)

Dianov, E.

Durr, F.

Fernandes, J. R. A.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fibre gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Fleming, J. W.

Gulyaev, Yu. V.

O. V. Ivanov, S. A. Nikitov, and Yu. V. Gulyaev, "Cladding modes of optical fibers: properties and applications," Physics-Uspekhi 49, 175-202 (2006).
[CrossRef]

Ivanov, O. V.

O. V. Ivanov, S. A. Nikitov, and Yu. V. Gulyaev, "Cladding modes of optical fibers: properties and applications," Physics-Uspekhi 49, 175-202 (2006).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Jeong, Y.

Kim, S.

Kwon, J.

Lee, B.

Limberger, H. G.

Marques, P.

G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

Marques, P. V. S.

F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. Dianov, H. G. Limberger, and R. P. Salathe, "Stress profiling of arc-induced long period fiber gratings," J. Lightwave Technol. 23, 3947-3953 (2005).
[CrossRef]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fibre gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Nikitov, S. A.

O. V. Ivanov, S. A. Nikitov, and Yu. V. Gulyaev, "Cladding modes of optical fibers: properties and applications," Physics-Uspekhi 49, 175-202 (2006).
[CrossRef]

Okhotnikov, O.

Park, N.

Rego, G.

G. Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. Dianov, H. G. Limberger, and R. P. Salathe, "Stress profiling of arc-induced long period fiber gratings," J. Lightwave Technol. 23, 3947-3953 (2005).
[CrossRef]

G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fibre gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001).
[CrossRef]

Salathe, R. P.

Salgado, H. M.

G. Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fibre gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Santos, J. L.

G. Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fibre gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

Santos, L.

G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

Schroder, B.

G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

Semjonov, S. L.

Sulimov, V.

Tatam, R. P.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

G. Rego, L. Santos, B. Schroder, P. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Opt. Commun. (2)

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, "New technique to mechanically induce long-period fibre gratings," Opt. Commun. 220, 111-118 (2003).
[CrossRef]

G. Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

Physics-Uspekhi (1)

O. V. Ivanov, S. A. Nikitov, and Yu. V. Gulyaev, "Cladding modes of optical fibers: properties and applications," Physics-Uspekhi 49, 175-202 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Resonance wavelengths of cladding modes excited by (a) microbend LPFG in SMF-28 fiber, (b) arc-induced LPFG in SMF-28 fiber, and (c) arc-induced LPFG in PS1250/1500 fiber versus period. The squares are experimental data; the curves are simulation results.

Fig. 2.
Fig. 2.

Spectra of (a) a 600-µm LPFG mechanically induced in SMF-28 fiber, (b) a 540-µm LPFG arc-induced in SMF-28 fiber, and (c) a 415-µm LPFG arc-induced in PS1250/1500 fiber. The solid curves are experimental data; the dashed curves are simulation results.

Fig. 3.
Fig. 3.

Near-field intensity distributions of (a) LP14 cladding mode of a 540-µm LPFG arc-induced in the SMF-28 fiber and (b) LP07 cladding mode of a 415-µm LPFG arc-induced in the PS1250/1500 fiber.

Tables (1)

Tables Icon

Table 1. Results of optimization for the three gratings

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β ( co ) β i ( cl ) = 2 π Λ ,
f ijk ( u ) = β ( co ) ( λ ijk , v k , u ) β i ( cl ) ( λ ijk , v k , u ) 2 π Λ j ,
F ( u ) = i , j , k f ijk 2 ( u ) .

Metrics