Abstract

The laser diffractometer is an effective instrument for calibrating pitch standard of a grating structure. A conventional diffractometer based on the Littrow configuration cannot measure a grating whose pitch is less than half of the laser wavelength when the diffractometer is operated in the atmosphere. This study proposes an immersion diffractometer to raise the refractive index of the environment. Thus the new approach can overcome the limit of one-half wavelength. A 288 nm grating was measured using an immersion diffractometer with a 633 nm laser and using a conventional diffractometer with a 543 nm laser to demonstrate the feasibility and effectiveness of the proposed technology. The difference between the pitches obtained by these two methods is around 0.05 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid refractometer based on immersion diffractometry

Sheng-Hua Lu, Shan-Peng Pan, Tzong-Shi Liu, and Ching-Fen Kao
Opt. Express 15(15) 9470-9475 (2007)

22-nm immersion interference lithography

T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild
Opt. Express 14(14) 6434-6443 (2006)

Machined immersion grating with theoretically predicted diffraction efficiency

Yuji Ikeda, Naoto Kobayashi, Yuki Sarugaku, Takashi Sukegawa, Shigeru Sugiyama, Sayumi Kaji, Kenshi Nakanishi, Sohei Kondo, Chikako Yasui, Hirokazu Kataza, Takao Nakagawa, and Hideyo Kawakita
Appl. Opt. 54(16) 5193-5202 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100 nm pitch standard characterization for metrology applications,” Proc. SPIE 4689, 558–564 (2002).
    [Crossref]
  2. CCL-S1: Comparison of one-dimensional grating, http://kcdb.bipm.org/AppendixB/default.asp.
  3. G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H.-U. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol. 16, 1241–1249 (2005).
    [Crossref]
  4. V. I. Korotkov, S. A. Pulkin, A. L. Vitushkin, and L. F. Vitushkin, “Laser interferometric diffractometry for measurements of diffraction grating spacing,” Appl. Opt. 35, 4782–4786 (1996).
    [Crossref] [PubMed]
  5. T. H. Yoo, C. I. Eom, M. S. Chung, and H. J. Kong, “Diffractometric methods for absolute measurements of diffraction-grating spacings,” Opt. Lett. 24, 107–109 (1999).
    [Crossref]
  6. M. Switkes and M. Rothschild, “Immersion lithography at 157 nm,” J. Vac. Sci. Technol B 19, 2353–2356 (2001).
    [Crossref]

2005 (1)

G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H.-U. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol. 16, 1241–1249 (2005).
[Crossref]

2002 (1)

M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100 nm pitch standard characterization for metrology applications,” Proc. SPIE 4689, 558–564 (2002).
[Crossref]

2001 (1)

M. Switkes and M. Rothschild, “Immersion lithography at 157 nm,” J. Vac. Sci. Technol B 19, 2353–2356 (2001).
[Crossref]

1999 (1)

1996 (1)

Chung, M. S.

Dai, G.

G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H.-U. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol. 16, 1241–1249 (2005).
[Crossref]

Danzebrink, H.-U.

G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H.-U. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol. 16, 1241–1249 (2005).
[Crossref]

Dziomba, T.

G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H.-U. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol. 16, 1241–1249 (2005).
[Crossref]

Eom, C. I.

Koenders, L.

G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H.-U. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol. 16, 1241–1249 (2005).
[Crossref]

Kong, H. J.

Konicek, P.

M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100 nm pitch standard characterization for metrology applications,” Proc. SPIE 4689, 558–564 (2002).
[Crossref]

Korotkov, V. I.

Pohlenz, F.

G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H.-U. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol. 16, 1241–1249 (2005).
[Crossref]

Prochazka, J.

M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100 nm pitch standard characterization for metrology applications,” Proc. SPIE 4689, 558–564 (2002).
[Crossref]

Pulkin, S. A.

Rothschild, M.

M. Switkes and M. Rothschild, “Immersion lithography at 157 nm,” J. Vac. Sci. Technol B 19, 2353–2356 (2001).
[Crossref]

Schneir, J.

M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100 nm pitch standard characterization for metrology applications,” Proc. SPIE 4689, 558–564 (2002).
[Crossref]

Smith, I. R.

M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100 nm pitch standard characterization for metrology applications,” Proc. SPIE 4689, 558–564 (2002).
[Crossref]

Switkes, M.

M. Switkes and M. Rothschild, “Immersion lithography at 157 nm,” J. Vac. Sci. Technol B 19, 2353–2356 (2001).
[Crossref]

Tortonese, M.

M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100 nm pitch standard characterization for metrology applications,” Proc. SPIE 4689, 558–564 (2002).
[Crossref]

Vitushkin, A. L.

Vitushkin, L. F.

Yoo, T. H.

Appl. Opt. (1)

J. Vac. Sci. Technol B (1)

M. Switkes and M. Rothschild, “Immersion lithography at 157 nm,” J. Vac. Sci. Technol B 19, 2353–2356 (2001).
[Crossref]

Meas. Sci. Technol. (1)

G. Dai, L. Koenders, F. Pohlenz, T. Dziomba, and H.-U. Danzebrink, “Accurate and traceable calibration of one-dimensional gratings,” Meas. Sci. Technol. 16, 1241–1249 (2005).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

M. Tortonese, J. Prochazka, P. Konicek, J. Schneir, and I. R. Smith, “100 nm pitch standard characterization for metrology applications,” Proc. SPIE 4689, 558–564 (2002).
[Crossref]

Other (1)

CCL-S1: Comparison of one-dimensional grating, http://kcdb.bipm.org/AppendixB/default.asp.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Conventional laser diffractometer

Fig. 2.
Fig. 2.

Immersion grating and light paths for (a) γ<ϕ (b) γ>ϕ

Fig. 3.
Fig. 3.

Relationships between the ratio p/λv and angle γ corresponding to a grating immersed in oil and air

Fig. 4.
Fig. 4.

Different ϕ changes the slope of the p/λv versus γ curve of an immersion diffractometer

Fig. 5.
Fig. 5.

Immersion diffractometer

Fig. 6.
Fig. 6.

Adjustments for (a) γ<ϕ (b) γ>ϕ

Tables (1)

Tables Icon

Table 1. Results of 288 nm grating measured under different conditions

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p = λ v 2 n a sin γ
p = λ v 2 n o sin θ o
n o sin θ o = n p sin θ p
θ p = ϕ β for γ < ϕ
θ p = ϕ + β for γ < ϕ
n p sin β = n a sin α
α = ϕ γ for γ < ϕ
α = γ ϕ for γ > ϕ
p = λ v × { 2 n p sin [ ϕ sin 1 ( n a n p 1 sin { ϕ γ } ) ] } 1 for γ < ϕ
p = λ v × { 2 n p sin [ ϕ + sin 1 ( n a n p 1 sin { γ ϕ } ) ] } 1 for γ > ϕ

Metrics