Abstract

We have designed and demonstrated a very simple and compact ultrashort-pulse compressor using a single prism and a corner-cube. Our design is significantly easier to align and tune compared with previous designs. Angle-tuning the prism wavelength-tunes, and translating the corner cube varies the group-delay dispersion over a wide range. When tuned, the device automatically maintains zero angular dispersion, zero pulse-front tilt, zero spatial chirp, and unity magnification. The device can easily be built so that its output beam remains collinear with the input beam, and when the input beam or pulse compressor moves, the input and output beams remain collinear.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. Martinez, J. P. Gordon, and R. L. Fork, "Negative group-velocity dispersion using refraction," J. Opt. Soc. Am. B 1, 1003-1006 (1984).
    [CrossRef]
  2. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pair of prisms," Opt. Lett. 9, 150-152 (1984).
    [CrossRef] [PubMed]
  3. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, "The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams," Opt. Express 13, 8642 - 8661 (2005).
    [CrossRef] [PubMed]
  4. M. Lai, S. T. Lai, and C. Swinger, "Single-grating laser pulse stretcher and compressor," Appl. Opt. 33, 6985-6987 (1993).
    [CrossRef]
  5. R. Trebino, "Achromatic N-prism beam expanders: optimal configurations," Appl. Opt. 24, 1130-1138 (1985).
    [CrossRef] [PubMed]
  6. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE," Opt. Express 11, 491-501 (2003).
    [CrossRef] [PubMed]
  7. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating," Opt. Express 11,68-78 (2003).
    [CrossRef] [PubMed]
  8. R. Trebino, Frequency-Resolved Optical Gating (Kluwer Academic Publishers, Boston, 2002).

2005 (1)

2003 (2)

1993 (1)

1985 (1)

1984 (2)

O. E. Martinez, J. P. Gordon, and R. L. Fork, "Negative group-velocity dispersion using refraction," J. Opt. Soc. Am. B 1, 1003-1006 (1984).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pair of prisms," Opt. Lett. 9, 150-152 (1984).
[CrossRef] [PubMed]

Akturk, S.

Fork, R. L.

R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pair of prisms," Opt. Lett. 9, 150-152 (1984).
[CrossRef] [PubMed]

O. E. Martinez, J. P. Gordon, and R. L. Fork, "Negative group-velocity dispersion using refraction," J. Opt. Soc. Am. B 1, 1003-1006 (1984).
[CrossRef]

Gabolde, P.

Gordon, J. P.

O. E. Martinez, J. P. Gordon, and R. L. Fork, "Negative group-velocity dispersion using refraction," J. Opt. Soc. Am. B 1, 1003-1006 (1984).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pair of prisms," Opt. Lett. 9, 150-152 (1984).
[CrossRef] [PubMed]

Gu, X.

Kimmel, M.

Lai, M.

Lai, S. T.

Martinez, O. E.

R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pair of prisms," Opt. Lett. 9, 150-152 (1984).
[CrossRef] [PubMed]

O. E. Martinez, J. P. Gordon, and R. L. Fork, "Negative group-velocity dispersion using refraction," J. Opt. Soc. Am. B 1, 1003-1006 (1984).
[CrossRef]

O'Shea, P.

Swinger, C.

Trebino, R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Pulse compressor, which has negative GDD. Longer wavelengths traverse more glass. The use of two prisms and a mirror simplifies the device somewhat, but it remains difficult to vary its GDD over a wide range and to tune it.

Fig. 2.
Fig. 2.

Single-prism pulse compressor.

Fig. 3.
Fig. 3.

The prism angle and system throughput (after four passes, not counting imperfect mirror reflectivity) vs. wavelength for single-prism pulse compressor designed using the highly dispersive material, PBH71.

Fig. 4.
Fig. 4.

The change of output GDD in our pulse compressor design, as the prism – corner cube separation is varied, for different prism materials. Propagation through a total of 20 mm prism material is assumed.

Fig. 5.
Fig. 5.

GDD vs. prism – corner cube separation for single prism pulse compressor. Top: with PBH71 Prism, Bottom: with BK7 Prism. The GDD values have more noise near zero because small amounts of chirp cause only small changes in the pulse length.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M 1 = 1 M 2 = M 3 = 1 M 4
M D 1 = D 2 = M D 3 = D 4
D tot = D 1 M 2 M 3 M 4 + D 2 M 3 M 4 + D 3 M 4 + D 4

Metrics