Abstract

A periodically poled lithium niobate (PPLN) crystal has been used as an efficient source of non-collinearly generated polarization-entangled photon pairs at 810 and 1550 nm. The PPLN crystal was endowed with a specially designed poling pattern and the entangled photons were generated via the nonlinear optical process of spontaneous parametric down conversion (SPDC). A novel design based on overlapping two concurrent type-I quasi-phase-matching structures in a single PPLN crystals produced correlated pairs of alternatively polarized photons in largely separated spectral regions. The phase of the resulting two-photon state is directly linked to parameters of the nonlinear grating. Continuous tunability of the generated Bell state, from Φ+ to Φ-, has been demonstrated by translating a slightly wedged crystal perpendicular to the pump beam.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Klyshko, Photons and Nonlinear Optics, (Gordon and Breach, New York, 1988).
  2. Z. Y. Ou and L. Mandel, "Violation of Bell’s inequality and classical probability in a two-photon correlation experiment," Phys. Rev. Lett. 61, 50-53 (1988).
    [CrossRef] [PubMed]
  3. Y. H. Shih and C. O. Alley, "New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion," Phys. Rev. Lett. 61, 2921-2924 (1988).
    [CrossRef] [PubMed]
  4. A. Migdall, R. Datla, A. V. Sergienko, and Y. H. Shih, "Absolute detector quantum efficiency measurements using correlated photons," Metrologia 32, 479-483 (1995).
    [CrossRef]
  5. D. Branning, A. L. Migdall, and A. V. Sergienko, "Simultaneous measurement of group and phase delay between two photons," Phys. Rev. A 62, 63808 (2000).
    [CrossRef]
  6. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-3432 (1995).
    [CrossRef] [PubMed]
  7. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Entangled-photon Fourier optics," J. Opt. Soc. Am. B 19, 1174-1184 (2002).
    [CrossRef]
  8. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography," Opt. Express 12, 1353-1362 (2004).
    [CrossRef] [PubMed]
  9. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, "Momentum-position realization of the Einstein-Podolsky-Rosen paradox using spontaneous parametric downconversion," Phys. Rev. Lett. 92, 210403 (2004).
    [CrossRef] [PubMed]
  10. D. Bouwmeester, and A. K. Ekert et al., The Physics of Quantum Information, (Springer, New York, 1999).
  11. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (1997).
    [CrossRef]
  12. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80,1121-1125 (1998).
    [CrossRef]
  13. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, "Dense coding in experimental quantum communications," Phys. Rev. Lett. 76, 4656 (1996).
    [CrossRef] [PubMed]
  14. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
    [CrossRef] [PubMed]
  15. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
    [CrossRef] [PubMed]
  16. A. V. Sergienko, ed., Quantum Communications and Cryptography, (CRC Press, Taylor & Francis Group New York, 2005).
    [CrossRef]
  17. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  18. M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, "Source of polarization entanglement in a single periodically poled KTiOPO4," Opt. Express 13, 127-135 (2005).
    [CrossRef] [PubMed]
  19. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, "Ultrabright source of polarization entangled photons," Phys. Rev. A 60, R773-776 (1999).
    [CrossRef]
  20. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Express 12,3573-3580 (2004).
    [CrossRef] [PubMed]
  21. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  22. F. König, E. J. Mason, F. N. C. Wong and M. A. Albota, "Efficient and spectrally bright source of polarizationentangled photons," Phys. Rev. A 71, 033805 (2005).
    [CrossRef]
  23. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  24. L. E Myers, R. C. Eckart, M. M. Fejer, R. L. Byer, W. R. Rosenberg, and J. W. Pierce, "Quasi-phasematched optical parametric oscillators using bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  25. G. D. Miller, R. G. Batchko,W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42% Efficient single-pass cw second-harmonic generation in periodically poled LiNbO3," Opt. Lett. 22,1834 (1997).
    [CrossRef]
  26. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
    [CrossRef]
  27. C. Elliott, "The DARPA quantum network," ArXiv, quant-ph/0412029.
  28. S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, "Spatial-to-spectral mapping in spontaneous parametric down-conversion," Phys. Rev. A 70, 043817 (2004).
    [CrossRef]
  29. G. D. Miller, "Periodically poled lithium niobate: Modeling, fabrication, and nonlinear-optical performance," Ph.D. dissertation (Stanford University, July 1998).
    [CrossRef]
  30. H. Guillet de Chatellus, G. Di Giuseppe, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, "Engineering entangled photon states using two-dimensional PPLN crystals," in Photon Management, F. Wyrowski, ed., Proc. SPIE 5456, 75-80 (2004).

2005

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, "Source of polarization entanglement in a single periodically poled KTiOPO4," Opt. Express 13, 127-135 (2005).
[CrossRef] [PubMed]

F. König, E. J. Mason, F. N. C. Wong and M. A. Albota, "Efficient and spectrally bright source of polarizationentangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

2004

S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, "Spatial-to-spectral mapping in spontaneous parametric down-conversion," Phys. Rev. A 70, 043817 (2004).
[CrossRef]

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Express 12,3573-3580 (2004).
[CrossRef] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography," Opt. Express 12, 1353-1362 (2004).
[CrossRef] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, "Momentum-position realization of the Einstein-Podolsky-Rosen paradox using spontaneous parametric downconversion," Phys. Rev. Lett. 92, 210403 (2004).
[CrossRef] [PubMed]

2002

2001

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

2000

D. Branning, A. L. Migdall, and A. V. Sergienko, "Simultaneous measurement of group and phase delay between two photons," Phys. Rev. A 62, 63808 (2000).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

1999

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, "Ultrabright source of polarization entangled photons," Phys. Rev. A 60, R773-776 (1999).
[CrossRef]

1998

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80,1121-1125 (1998).
[CrossRef]

1997

1996

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, "Dense coding in experimental quantum communications," Phys. Rev. Lett. 76, 4656 (1996).
[CrossRef] [PubMed]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

A. Migdall, R. Datla, A. V. Sergienko, and Y. H. Shih, "Absolute detector quantum efficiency measurements using correlated photons," Metrologia 32, 479-483 (1995).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-3432 (1995).
[CrossRef] [PubMed]

L. E Myers, R. C. Eckart, M. M. Fejer, R. L. Byer, W. R. Rosenberg, and J. W. Pierce, "Quasi-phasematched optical parametric oscillators using bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

1988

Z. Y. Ou and L. Mandel, "Violation of Bell’s inequality and classical probability in a two-photon correlation experiment," Phys. Rev. Lett. 61, 50-53 (1988).
[CrossRef] [PubMed]

Y. H. Shih and C. O. Alley, "New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion," Phys. Rev. Lett. 61, 2921-2924 (1988).
[CrossRef] [PubMed]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918 (1962).
[CrossRef]

Abouraddy, A. F.

Albota, M. A.

F. König, E. J. Mason, F. N. C. Wong and M. A. Albota, "Efficient and spectrally bright source of polarizationentangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

Alley, C. O.

Y. H. Shih and C. O. Alley, "New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion," Phys. Rev. Lett. 61, 2921-2924 (1988).
[CrossRef] [PubMed]

Appelbaim, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, "Ultrabright source of polarization entangled photons," Phys. Rev. A 60, R773-776 (1999).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918 (1962).
[CrossRef]

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Batchko, R. G.

Bennink, R. S.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, "Momentum-position realization of the Einstein-Podolsky-Rosen paradox using spontaneous parametric downconversion," Phys. Rev. Lett. 92, 210403 (2004).
[CrossRef] [PubMed]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, "Momentum-position realization of the Einstein-Podolsky-Rosen paradox using spontaneous parametric downconversion," Phys. Rev. Lett. 92, 210403 (2004).
[CrossRef] [PubMed]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918 (1962).
[CrossRef]

Boschi, D.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80,1121-1125 (1998).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (1997).
[CrossRef]

Boyd, R. W.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, "Momentum-position realization of the Einstein-Podolsky-Rosen paradox using spontaneous parametric downconversion," Phys. Rev. Lett. 92, 210403 (2004).
[CrossRef] [PubMed]

Branca, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80,1121-1125 (1998).
[CrossRef]

Branning, D.

D. Branning, A. L. Migdall, and A. V. Sergienko, "Simultaneous measurement of group and phase delay between two photons," Phys. Rev. A 62, 63808 (2000).
[CrossRef]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Byer, R. L.

Canalias, C.

Carrasco, S.

S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, "Spatial-to-spectral mapping in spontaneous parametric down-conversion," Phys. Rev. A 70, 043817 (2004).
[CrossRef]

Datla, R.

A. Migdall, R. Datla, A. V. Sergienko, and Y. H. Shih, "Absolute detector quantum efficiency measurements using correlated photons," Metrologia 32, 479-483 (1995).
[CrossRef]

De Martini, F.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80,1121-1125 (1998).
[CrossRef]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, "Ultrabright source of polarization entangled photons," Phys. Rev. A 60, R773-776 (1999).
[CrossRef]

Eckart, R. C.

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (1997).
[CrossRef]

Fejer, M. M.

Fiorentino, M.

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, "Source of polarization entanglement in a single periodically poled KTiOPO4," Opt. Express 13, 127-135 (2005).
[CrossRef] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Fragemann, A.

Gisin, N.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Hardy, L.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80,1121-1125 (1998).
[CrossRef]

Howell, J. C.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, "Momentum-position realization of the Einstein-Podolsky-Rosen paradox using spontaneous parametric downconversion," Phys. Rev. Lett. 92, 210403 (2004).
[CrossRef] [PubMed]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Karlsson, A.

König, F.

F. König, E. J. Mason, F. N. C. Wong and M. A. Albota, "Efficient and spectrally bright source of polarizationentangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

Kuklewicz, C. E.

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, "Source of polarization entanglement in a single periodically poled KTiOPO4," Opt. Express 13, 127-135 (2005).
[CrossRef] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, "Ultrabright source of polarization entangled photons," Phys. Rev. A 60, R773-776 (1999).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, "Dense coding in experimental quantum communications," Phys. Rev. Lett. 76, 4656 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Laurell, F.

Ljunggren, D.

Mandel, L.

Z. Y. Ou and L. Mandel, "Violation of Bell’s inequality and classical probability in a two-photon correlation experiment," Phys. Rev. Lett. 61, 50-53 (1988).
[CrossRef] [PubMed]

Marsden, P.

Mason, E. J.

F. König, E. J. Mason, F. N. C. Wong and M. A. Albota, "Efficient and spectrally bright source of polarizationentangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, "Dense coding in experimental quantum communications," Phys. Rev. Lett. 76, 4656 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Migdall, A.

A. Migdall, R. Datla, A. V. Sergienko, and Y. H. Shih, "Absolute detector quantum efficiency measurements using correlated photons," Metrologia 32, 479-483 (1995).
[CrossRef]

Migdall, A. L.

D. Branning, A. L. Migdall, and A. V. Sergienko, "Simultaneous measurement of group and phase delay between two photons," Phys. Rev. A 62, 63808 (2000).
[CrossRef]

Miller, G. D.

Myers, L. E

Nasr, M. B.

Ostrowski, D. B.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou and L. Mandel, "Violation of Bell’s inequality and classical probability in a two-photon correlation experiment," Phys. Rev. Lett. 61, 50-53 (1988).
[CrossRef] [PubMed]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (1997).
[CrossRef]

Pelton, M.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pierce, J. W.

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-3432 (1995).
[CrossRef] [PubMed]

Popescu, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80,1121-1125 (1998).
[CrossRef]

Rosenberg, W. R.

Saleh, B. E. A.

Sergienko, A.

S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, "Spatial-to-spectral mapping in spontaneous parametric down-conversion," Phys. Rev. A 70, 043817 (2004).
[CrossRef]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography," Opt. Express 12, 1353-1362 (2004).
[CrossRef] [PubMed]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Entangled-photon Fourier optics," J. Opt. Soc. Am. B 19, 1174-1184 (2002).
[CrossRef]

D. Branning, A. L. Migdall, and A. V. Sergienko, "Simultaneous measurement of group and phase delay between two photons," Phys. Rev. A 62, 63808 (2000).
[CrossRef]

A. Migdall, R. Datla, A. V. Sergienko, and Y. H. Shih, "Absolute detector quantum efficiency measurements using correlated photons," Metrologia 32, 479-483 (1995).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-3432 (1995).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-3432 (1995).
[CrossRef] [PubMed]

A. Migdall, R. Datla, A. V. Sergienko, and Y. H. Shih, "Absolute detector quantum efficiency measurements using correlated photons," Metrologia 32, 479-483 (1995).
[CrossRef]

Y. H. Shih and C. O. Alley, "New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion," Phys. Rev. Lett. 61, 2921-2924 (1988).
[CrossRef] [PubMed]

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-3432 (1995).
[CrossRef] [PubMed]

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Teich, M. C.

Tengner, M.

Tittel, W.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Torner, L.

S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, "Spatial-to-spectral mapping in spontaneous parametric down-conversion," Phys. Rev. A 70, 043817 (2004).
[CrossRef]

Torres, J. P.

S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, "Spatial-to-spectral mapping in spontaneous parametric down-conversion," Phys. Rev. A 70, 043817 (2004).
[CrossRef]

Tulloch, W. M.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, "Ultrabright source of polarization entangled photons," Phys. Rev. A 60, R773-776 (1999).
[CrossRef]

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, "Dense coding in experimental quantum communications," Phys. Rev. Lett. 76, 4656 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Weise, D. R.

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, "Ultrabright source of polarization entangled photons," Phys. Rev. A 60, R773-776 (1999).
[CrossRef]

Wong, F. N. C.

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, "Source of polarization entanglement in a single periodically poled KTiOPO4," Opt. Express 13, 127-135 (2005).
[CrossRef] [PubMed]

F. König, E. J. Mason, F. N. C. Wong and M. A. Albota, "Efficient and spectrally bright source of polarizationentangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Zbinden, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, "Dense coding in experimental quantum communications," Phys. Rev. Lett. 76, 4656 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Electron. Lett.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Metrologia

A. Migdall, R. Datla, A. V. Sergienko, and Y. H. Shih, "Absolute detector quantum efficiency measurements using correlated photons," Metrologia 32, 479-483 (1995).
[CrossRef]

Nature

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918 (1962).
[CrossRef]

Phys. Rev. A

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarizationentangled photons from a periodically-poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

F. König, E. J. Mason, F. N. C. Wong and M. A. Albota, "Efficient and spectrally bright source of polarizationentangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, A. Sergienko, B. E. A. Saleh, and M. C. Teich, "Spatial-to-spectral mapping in spontaneous parametric down-conversion," Phys. Rev. A 70, 043817 (2004).
[CrossRef]

D. Branning, A. L. Migdall, and A. V. Sergienko, "Simultaneous measurement of group and phase delay between two photons," Phys. Rev. A 62, 63808 (2000).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-3432 (1995).
[CrossRef] [PubMed]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaim, and P. H. Eberhard, "Ultrabright source of polarization entangled photons," Phys. Rev. A 60, R773-776 (1999).
[CrossRef]

Phys. Rev. Lett.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80,1121-1125 (1998).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, "Dense coding in experimental quantum communications," Phys. Rev. Lett. 76, 4656 (1996).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Z. Y. Ou and L. Mandel, "Violation of Bell’s inequality and classical probability in a two-photon correlation experiment," Phys. Rev. Lett. 61, 50-53 (1988).
[CrossRef] [PubMed]

Y. H. Shih and C. O. Alley, "New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion," Phys. Rev. Lett. 61, 2921-2924 (1988).
[CrossRef] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, "Momentum-position realization of the Einstein-Podolsky-Rosen paradox using spontaneous parametric downconversion," Phys. Rev. Lett. 92, 210403 (2004).
[CrossRef] [PubMed]

Other

D. Bouwmeester, and A. K. Ekert et al., The Physics of Quantum Information, (Springer, New York, 1999).

A. V. Sergienko, ed., Quantum Communications and Cryptography, (CRC Press, Taylor & Francis Group New York, 2005).
[CrossRef]

D. N. Klyshko, Photons and Nonlinear Optics, (Gordon and Breach, New York, 1988).

G. D. Miller, "Periodically poled lithium niobate: Modeling, fabrication, and nonlinear-optical performance," Ph.D. dissertation (Stanford University, July 1998).
[CrossRef]

H. Guillet de Chatellus, G. Di Giuseppe, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, "Engineering entangled photon states using two-dimensional PPLN crystals," in Photon Management, F. Wyrowski, ed., Proc. SPIE 5456, 75-80 (2004).

C. Elliott, "The DARPA quantum network," ArXiv, quant-ph/0412029.

Supplementary Material (1)

» Media 1: AVI (1617 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of generating polarization-entangled pairs at 810 and 1550 nm. Two systems of cones (e and o polarized) are caused to overlap. Entangled pairs are collected along the directions labeled 1 and 2, always on opposite sides of the pump beam. The two inserts illustrate the definitions of the fundamental parameters of the PPC: the period Λ and the (angular) duty cycle α.

Fig. 2.
Fig. 2.

Left: input face of the poled crystal. The spatial period is 27.5µm. Note the highly unbalanced duty cycle between the ferroelectric domains. The red arrow represents the normal to the input face while the blue arrow is the normal to the domain walls. Right: the two-photon state phase ϕ is modified by simply changing the transverse position of the input beam.

Fig. 3.
Fig. 3.

Movie size: 350 K. Image from the CCD camera that collects the 810-nm SPDC rings as crystal temperature is varied. The bandwidth of the interference filter is 10 nm. The ring that disappears at 130° C is the extraordinary polarized one. The movie illustrates the versatility of using periodically poled structures for applications that exploit non-collinear geometries.

Fig. 4.
Fig. 4.

Relative spectra of the 810-nm photons for the two processes (ee+e and eo+o) collected through a narrow pinhole that serves as a spatial filter (see text for details).

Fig. 5.
Fig. 5.

Experimental arrangement for the Bell-state measurement. IF=interference filter at 810 nm (FWHM=10 nm), λ/2=half-waveplate, GT=Glan-Thompson prism, FC=fiber coupler, MM=multimode, SM=single-mode, Si=silicon APD photon-counting module, idQuantique=InGaAs photon-counting detector, TAC=time-to-amplitude converter.

Fig. 6.
Fig. 6.

Results of a Bell-state measurement. Top: singles rate at 810 nm as a function of the orientation of the polarization analyzer in the 810-nm path with respect to the z axis. Bottom: coincidence rates for three different settings of the 1550-nm analyzer.

Fig. 7.
Fig. 7.

Demonstration of the tunability of the output two-photon state. Both analyzers are set at 45° and the crystal is translated perpendicularly to the pump beam. Top: singles rate at 810 nm. Bottom: coincidence rate. The translation distances at which Φ+ and Φ- emerge are shown.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

χ ijk ( 2 ) ( r ) = q χ ˜ ijk ( 2 ) ( q ) e i q · r ,
χ ˜ ijk ( 2 ) ( q ) = 1 Λ Λ 2 + Λ 2 d x χ ijk ( 2 ) ( x ) e i q · r .
ψ ( 2 ) V d r dt tensor χ psi ( 2 ) ( x ) E ̂ p + ( r , t ) E ̂ s ( r , t ) E ̂ i ( r , t ) vac ,
E ̂ s ( r , t ) = d ω s ω s n s ( ω s ) E s e i k s ( ω s ) · r e i ω s t a s + ( ω s , k s ( ω s ) ) ,
E ̂ i ( r , t ) = d ω i ω i n i ( ω i ) E i e i k i ( ω i ) · r e i ω i t a i + ( ω i , k i ( ω i ) ) .
E p ( r , t ) = d ω p ω p n p ( ω p ) E p e i k p ( ω p ) · r e i ω p t .
ψ ( 2 ) d ω s d ω p δ ( ω p ω s ω i ) ( tensor n = n = + χ ˜ psi ( 2 ) ( n q 0 ) n p ( ω p ) n s ( ω s ) n i ( ω i )
× V d r e i ( k p ( ω p ) k s ( ω s ) k i ( ω i ) n q 0 ) · r ) 1 ω s , k s ( ω s ) 1 ω i , k i ( ω i ) .
Φ = ( e , e + e i ϕ o , o ) 2 ,
k e ( ω p ) k e ( ω s ) k e ( ω i ) = n ee q 0
k e ( ω p ) k o ( ω s ) k o ( ω i ) = n oo q 0 .
ψ ee ( 2 ) d ω s d ω p δ ( ω p ω s ω i ) ×
χ ˜ eee ( 2 ) ( 4 q 0 ) n e ( ω p ) n e ( ω s ) n e ( ω i ) 0 L d x e i ( k e ( ω p ) k e ( ω s ) k e ( ω i ) 4 q 0 ) x 1 ω s , k e ( ω s ) 1 ω i , k e ( ω i ) .
ψ ee ( 2 ) χ ˜ eee ( 2 ) ( 4 q 0 ) n e ( ω p ) n e ( ω s 0 ) n e ( ω i 0 ) 0 L d x e i ( 1 u s , e 1 u i , e ) ν · x 1 ω s , k e ( ω s ) 1 ω i , k e ( ω i ) .
ψ ee ( 2 ) 1 L χ ˜ eee ( 2 ) ( 4 q 0 ) n e ( ω p ) n e ( ω s 0 ) n e ( ω i 0 ) e i ν D ee L 2 sinc ( ν D ee L 2 ) 1 ω s , k e ( ω s ) 1 ω i , k e ( ω i ) .
ψ oo ( 2 ) 1 L χ ˜ eoo ( 2 ) ( 0 ) n e ( ω p ) n o ( ω s 0 ) n o ( ω i 0 ) e i ν D oo L 2 sinc ( ν D oo L 2 ) 1 ω s , k o ( ω s ) 1 ω i , k o ( ω i ) .
χ ˜ eee ( 2 ) ( 4 q 0 ) n e ( ω p ) n e ( ω s 0 ) n e ( ω i 0 ) sinc ( ν D ee L 2 ) = χ ˜ eoo ( 2 ) ( 0 ) n e ( ω p ) n o ( ω s 0 ) n o ( ω i 0 ) sinc ( ν D oo L 2 ) .
χ ˜ psi ( 2 ) ( q ) = χ ˜ psi ( 2 ) ( q ) n p ( ω p ) n s ( ω s 0 ) n i ( ω i 0 ) ,
ϕ = ν ( D ee D oo ) L 2 + arg [ χ ˜ eee ( 2 ) ( 4 q 0 ) χ ˜ eoo ( 2 ) ( 0 ) ] .

Metrics