Abstract

Single-photon detection at 1550-nm with a high repetition rate was realized using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Removing the AC noise due to the transferred gate signal using band elimination filters, we have discriminated the avalanche signal which is much smaller than that in the conventional gating, which results in the suppression of the afterpulsing. At the repetition frequency of 800MHz, the overall afterpulsing probability was 6.0% with the detection efficiency of 8.5%and the dark count probability of 9.2×10-6.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Stucki, N. Gisin, O. Guinnared, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 4, 41, (2002).
    [CrossRef]
  2. G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).
  3. N. Namekata, Y. Makino, and S. Inoue,"Single-photon detector for long-distance fiber-optic quantum key distribution," Opt. Lett. 27, 954-956, (2002).
    [CrossRef]
  4. A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606-3608 (2004).
    [CrossRef]
  5. D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).
  6. A. Tomita, and K. Nakamura, "Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm," Opt. Lett. 27, 1827-1829 (2002).
    [CrossRef]
  7. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727, (2005).
    [CrossRef] [PubMed]
  8. S. Sasamori, N. Namekata, and S. Inoue, IEICE trans. Japanese ed., to be published (2006).
  9. P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, "Photon counting with passively quenched germanium avalanche,"Appl. Opt. 33, 6895-6901, (1994).
    [CrossRef] [PubMed]
  10. A. Yoshizawa, R. Kaji, and H. Tsuchida, "10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43, 735-737, (2004).
    [CrossRef]
  11. P. L. Voss, K G. Köprülü, S. Choi, S. Dugan, and P. Kumar, "14-MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod Opt. 51, 1369-1379 (2004).

2005 (1)

2004 (5)

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).

A. Yoshizawa, R. Kaji, and H. Tsuchida, "10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43, 735-737, (2004).
[CrossRef]

P. L. Voss, K G. Köprülü, S. Choi, S. Dugan, and P. Kumar, "14-MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod Opt. 51, 1369-1379 (2004).

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606-3608 (2004).
[CrossRef]

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

2002 (3)

1994 (1)

Bethune, D. S.

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

Choi, S.

P. L. Voss, K G. Köprülü, S. Choi, S. Dugan, and P. Kumar, "14-MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod Opt. 51, 1369-1379 (2004).

Diamanti, E.

Dugan, S.

P. L. Voss, K G. Köprülü, S. Choi, S. Dugan, and P. Kumar, "14-MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod Opt. 51, 1369-1379 (2004).

Fejer, M. M.

Gisin, N.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).

D. Stucki, N. Gisin, O. Guinnared, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 4, 41, (2002).
[CrossRef]

Guinnard, O.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).

Guinnared, O.

D. Stucki, N. Gisin, O. Guinnared, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 4, 41, (2002).
[CrossRef]

Inoue, S.

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, "10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43, 735-737, (2004).
[CrossRef]

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606-3608 (2004).
[CrossRef]

Knight, D.

Köprülü, K G.

P. L. Voss, K G. Köprülü, S. Choi, S. Dugan, and P. Kumar, "14-MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod Opt. 51, 1369-1379 (2004).

Kumar, P.

P. L. Voss, K G. Köprülü, S. Choi, S. Dugan, and P. Kumar, "14-MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod Opt. 51, 1369-1379 (2004).

Langrock, C.

Makino, Y.

Nakamura, K.

Namekata, N.

Owens, P. C. M.

Pabst, G. W.

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

Rarity, J. G.

Ribordy, G.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).

D. Stucki, N. Gisin, O. Guinnared, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 4, 41, (2002).
[CrossRef]

Risk, W. P.

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

Roussev, R. V.

Stucki, D.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).

D. Stucki, N. Gisin, O. Guinnared, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 4, 41, (2002).
[CrossRef]

Tapster, P. R.

Tomita, A.

Townsend, P. D.

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, "10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43, 735-737, (2004).
[CrossRef]

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606-3608 (2004).
[CrossRef]

Voss, P. L.

P. L. Voss, K G. Köprülü, S. Choi, S. Dugan, and P. Kumar, "14-MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod Opt. 51, 1369-1379 (2004).

Wegmuller, M.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).

Yamamoto, Y.

Yoshizawa, A.

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606-3608 (2004).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, "10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43, 735-737, (2004).
[CrossRef]

Zbinden, H.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).

D. Stucki, N. Gisin, O. Guinnared, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 4, 41, (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Yoshizawa, R. Kaji and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl. Phys. Lett. 84, 3606-3608 (2004).
[CrossRef]

J. Mod Opt. (1)

P. L. Voss, K G. Köprülü, S. Choi, S. Dugan, and P. Kumar, "14-MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod Opt. 51, 1369-1379 (2004).

J. Mod. Opt. (2)

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki,M. Wegmuller, and H. Zbinden,"Photon counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance," J. Mod. Opt. 51, 1381-1398, (2004).

Jpn. J. Appl. Phys. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43, 735-737, (2004).
[CrossRef]

New J. Phys. (1)

D. Stucki, N. Gisin, O. Guinnared, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 4, 41, (2002).
[CrossRef]

Opt. Lett. (3)

Other (1)

S. Sasamori, N. Namekata, and S. Inoue, IEICE trans. Japanese ed., to be published (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Single-photon detection using an APD operated with the sine wave gating. (a) Gated passive quenching circuit (GPQC). RL =47kΩ, RO =Rm =51Ω, Cn =1nF, Cb =1µF. (b) RF spectra of the outputs of the GPQC without the BRF. The black (gray) line is the spectrum when the excess bias voltage VE was 1.9V (4.2V). (c) Oscilloscope trace of the output passing through the BEF (the signal was amplified by 20dB).

Fig. 2.
Fig. 2.

Experimental setup for the measurements of the quantum efficiency, the dark count probability, and afterpulsing probability. SG: signal generator, DG: delay generator, SMF: single-mode fiber, AT: optical attenuator, BEF: band elinination filter, MCS: multi channel scaler.

Fig. 3.
Fig. 3.

Relation between the excess voltage and the quantum efficiency.

Fig. 4.
Fig. 4.

Quantum efficiency vs. (a) afterpulsing probability and (b) dark count probability per gate as a function of the quantum efficiency. The peak-to-peak amplitude of the sine gate was 12V p-p except in the case of 800-MHz (10V p-p ).

Tables (1)

Tables Icon

Table 1. Comparison of the performances of the reported high speed single-photon detection. η: quantum efficiency, Pd : dark count probability per gate, Pa : overall afterpulsing probability, r: repetition rate of the gate, C: expected count rate when the average incident photon number is 0.1 per pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G ( 2 ) ( k ) = 1 + p ( 0 | k ) n ¯ ,
P a = k = 1 2 16 p ( 0 | k ) .

Metrics