Abstract

Synchronization of femtosecond laser with nanosecond (~250 ns) laser results in a large enhancement in laser ablation efficiency of the Si wafer 12 times more than that with an independent laser exposure. Transient changes in the status of target material due to the proceeding nanosecond laser increase the femtosecond laser ablation efficiency.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).
  2. C. Li, S. Nikumb, and F. Wong, "An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices," Opt. Lasers Eng. 44, 1078-1087 (2006).
    [CrossRef]
  3. T. Matsumura, A. Kazama, and T. Yagi, "Generation of debris in the femtosecond laser machining of a silicon substrate," Appl. Phys. A 81, 1393-1398 (2005).
    [CrossRef]
  4. M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
    [CrossRef]
  5. J. Li and G. K. Ananthasuresh, "A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices," J. Micromech. Microeng. 11,38-47 (2001).
    [CrossRef]
  6. J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulsesm," Appl. Phys. A 79, 775-778 (2004).
    [CrossRef]
  7. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
    [CrossRef]
  8. T. C. Chen and R. B. Darling, "Parametric studies on pulsed near ultraviolet frequency tripled Nd:YAG laser micromachining of sapphire and silicon," J. Mater. Process. Technol. 169, 214-218 (2005).
    [CrossRef]
  9. J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).
  10. M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006).
    [CrossRef] [PubMed]
  11. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
    [CrossRef]
  12. A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing, " Appl. Phys. A 77, 311-315 (2003).
  13. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, "Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass," Appl. Phys. A 69, S763-S766 (1999).
    [CrossRef]
  14. J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998).
    [CrossRef]
  15. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
    [CrossRef]
  16. C. Y. Chien and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
    [CrossRef]
  17. S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999).
    [CrossRef]
  18. H. Haferkamp, and D. Seebaum, "Beam delivery by adaptive optics for material processing applications using high-power CO2 lasers," in Laser Materials Processing: Industrial and Microelectronics Applications, E. Beyer, M. Cantello, A. V. La Rocca, L. D. Laude, F. O. Olsen, G. Sepold, eds., Proc. SPIE 2207, 156-164 (1994).
    [CrossRef]
  19. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
    [CrossRef]
  20. S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
    [CrossRef]
  21. F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
    [CrossRef]
  22. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
    [CrossRef]
  23. M. I. Park, C. S. Kim, C. O. Park, and S. C. Jeoung, "XRD studies on the femtosecond laser ablated single-crystal germanium in air," Opt. Lasers. Eng. 43, 1322-1329 (2005)
    [CrossRef]
  24. W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, "Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling," Appl. Phys. A 79, 771-774 (2004).
    [CrossRef]
  25. H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
    [CrossRef]
  26. L. Gavioli, M. G. Betti, and C. Mariani, "Dynamics-induced surface metallization of Si(100)," Phys. Rev. Lett. 77, 3869-3872 (1996).
    [CrossRef] [PubMed]
  27. V. R. Dhanak, A. Santoni, and L. Petaccia, "A high temperature X-ray absorption and valence band spectroscopy study of the Si(100) surface," J. Electron Spectrosc. Relat. Phenom. 114-116, 471 (2001).
  28. L. V. Zhigilei and B. J. Garrison, "Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration," Appl. Phys. A 69, S75-S80 (1999).
  29. J. S. Yahng, J. R. Nam, and S. C. Jeoung are preparing a manuscript to be called "Temperature dependence of ultrafast laser ablation threshold of crystalline silicone."
  30. D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, "Efficiency of silicon micromachining by femtosecond laser pulses in ambient air," J. Appl. Phys. 99, 083101 (2006).
    [CrossRef]

2006 (4)

C. Li, S. Nikumb, and F. Wong, "An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices," Opt. Lasers Eng. 44, 1078-1087 (2006).
[CrossRef]

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006).
[CrossRef] [PubMed]

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, "Efficiency of silicon micromachining by femtosecond laser pulses in ambient air," J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

2005 (9)

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

M. I. Park, C. S. Kim, C. O. Park, and S. C. Jeoung, "XRD studies on the femtosecond laser ablated single-crystal germanium in air," Opt. Lasers. Eng. 43, 1322-1329 (2005)
[CrossRef]

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

C. Y. Chien and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[CrossRef]

T. Matsumura, A. Kazama, and T. Yagi, "Generation of debris in the femtosecond laser machining of a silicon substrate," Appl. Phys. A 81, 1393-1398 (2005).
[CrossRef]

T. C. Chen and R. B. Darling, "Parametric studies on pulsed near ultraviolet frequency tripled Nd:YAG laser micromachining of sapphire and silicon," J. Mater. Process. Technol. 169, 214-218 (2005).
[CrossRef]

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

2004 (2)

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulsesm," Appl. Phys. A 79, 775-778 (2004).
[CrossRef]

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, "Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling," Appl. Phys. A 79, 771-774 (2004).
[CrossRef]

2003 (3)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing, " Appl. Phys. A 77, 311-315 (2003).

2002 (1)

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
[CrossRef]

2001 (2)

V. R. Dhanak, A. Santoni, and L. Petaccia, "A high temperature X-ray absorption and valence band spectroscopy study of the Si(100) surface," J. Electron Spectrosc. Relat. Phenom. 114-116, 471 (2001).

J. Li and G. K. Ananthasuresh, "A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices," J. Micromech. Microeng. 11,38-47 (2001).
[CrossRef]

2000 (1)

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

1999 (4)

S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, "Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass," Appl. Phys. A 69, S763-S766 (1999).
[CrossRef]

L. V. Zhigilei and B. J. Garrison, "Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration," Appl. Phys. A 69, S75-S80 (1999).

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

1998 (1)

J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998).
[CrossRef]

1996 (1)

L. Gavioli, M. G. Betti, and C. Mariani, "Dynamics-induced surface metallization of Si(100)," Phys. Rev. Lett. 77, 3869-3872 (1996).
[CrossRef] [PubMed]

Ahn, S. J.

S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999).
[CrossRef]

Amer, M. S.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Ananthasuresh, G. K.

J. Li and G. K. Ananthasuresh, "A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices," J. Micromech. Microeng. 11,38-47 (2001).
[CrossRef]

Bärsch, N.

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

Bekesi, J.

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulsesm," Appl. Phys. A 79, 775-778 (2004).
[CrossRef]

Benitez, F.

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

Betti, M. G.

L. Gavioli, M. G. Betti, and C. Mariani, "Dynamics-induced surface metallization of Si(100)," Phys. Rev. Lett. 77, 3869-3872 (1996).
[CrossRef] [PubMed]

Bibes, M.

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

Bonse, J.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, "Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass," Appl. Phys. A 69, S763-S766 (1999).
[CrossRef]

Bulgakova, N. M.

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, "Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling," Appl. Phys. A 79, 771-774 (2004).
[CrossRef]

Chen, T. C.

T. C. Chen and R. B. Darling, "Parametric studies on pulsed near ultraviolet frequency tripled Nd:YAG laser micromachining of sapphire and silicon," J. Mater. Process. Technol. 169, 214-218 (2005).
[CrossRef]

Chien, C. Y.

C. Y. Chien and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[CrossRef]

Cho, D.

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

Cho, K. H.

S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999).
[CrossRef]

Choi, D. S.

M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006).
[CrossRef] [PubMed]

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

Choi, H. M.

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

Choi, S. S.

S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999).
[CrossRef]

Choi, T. Y.

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, "Efficiency of silicon micromachining by femtosecond laser pulses in ambient air," J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

Chon, B. H.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

Chu, H. Y.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

Darling, R. B.

T. C. Chen and R. B. Darling, "Parametric studies on pulsed near ultraviolet frequency tripled Nd:YAG laser micromachining of sapphire and silicon," J. Mater. Process. Technol. 169, 214-218 (2005).
[CrossRef]

Dhanak, V. R.

V. R. Dhanak, A. Santoni, and L. Petaccia, "A high temperature X-ray absorption and valence band spectroscopy study of the Si(100) surface," J. Electron Spectrosc. Relat. Phenom. 114-116, 471 (2001).

Dosser, L. R.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

El-Ashry, M. A.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Fontcuberta, J.

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

Garcia, M. E.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
[CrossRef]

Garrison, B. J.

L. V. Zhigilei and B. J. Garrison, "Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration," Appl. Phys. A 69, S75-S80 (1999).

Gavioli, L.

L. Gavioli, M. G. Betti, and C. Mariani, "Dynamics-induced surface metallization of Si(100)," Phys. Rev. Lett. 77, 3869-3872 (1996).
[CrossRef] [PubMed]

Grigoropoulos, C. P.

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, "Efficiency of silicon micromachining by femtosecond laser pulses in ambient air," J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

Gupta, M. C.

C. Y. Chien and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[CrossRef]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Hix, K. E.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Horn, A.

J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998).
[CrossRef]

Hunt, A. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Hwang, D. J.

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, "Efficiency of silicon micromachining by femtosecond laser pulses in ambient air," J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

Irwin, B.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Jandeleit, J.

J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998).
[CrossRef]

Jeoung, S. C.

M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006).
[CrossRef] [PubMed]

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

M. I. Park, C. S. Kim, C. O. Park, and S. C. Jeoung, "XRD studies on the femtosecond laser ablated single-crystal germanium in air," Opt. Lasers. Eng. 43, 1322-1329 (2005)
[CrossRef]

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Jeschke, H. O.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

Kautek, W.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, "Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass," Appl. Phys. A 69, S763-S766 (1999).
[CrossRef]

Kazama, A.

T. Matsumura, A. Kazama, and T. Yagi, "Generation of debris in the femtosecond laser machining of a silicon substrate," Appl. Phys. A 81, 1393-1398 (2005).
[CrossRef]

Kim, C. S.

M. I. Park, C. S. Kim, C. O. Park, and S. C. Jeoung, "XRD studies on the femtosecond laser ablated single-crystal germanium in air," Opt. Lasers. Eng. 43, 1322-1329 (2005)
[CrossRef]

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Kim, D.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

Kim, D. S.

Kim, D. W.

S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999).
[CrossRef]

Kim, H. R.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

Kim, H. S.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006).
[CrossRef] [PubMed]

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999).
[CrossRef]

Kim, J. H.

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

Klein-Wiele, J. H.

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulsesm," Appl. Phys. A 79, 775-778 (2004).
[CrossRef]

Körber, K.

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

Kreutz, E. W.

J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998).
[CrossRef]

Krüger, J.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, "Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass," Appl. Phys. A 69, S763-S766 (1999).
[CrossRef]

Lee, J.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Lee, J. I.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

Lenzner, M.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
[CrossRef]

Li, C.

C. Li, S. Nikumb, and F. Wong, "An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices," Opt. Lasers Eng. 44, 1078-1087 (2006).
[CrossRef]

Li, J.

J. Li and G. K. Ananthasuresh, "A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices," J. Micromech. Microeng. 11,38-47 (2001).
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

Maguire, J. F.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Mariani, C.

L. Gavioli, M. G. Betti, and C. Mariani, "Dynamics-induced surface metallization of Si(100)," Phys. Rev. Lett. 77, 3869-3872 (1996).
[CrossRef] [PubMed]

Marine, W.

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, "Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling," Appl. Phys. A 79, 771-774 (2004).
[CrossRef]

Martinez, B.

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

Matsumura, T.

T. Matsumura, A. Kazama, and T. Yagi, "Generation of debris in the femtosecond laser machining of a silicon substrate," Appl. Phys. A 81, 1393-1398 (2005).
[CrossRef]

Mazur, E.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

Mourou, G.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

Nikumb, S.

C. Li, S. Nikumb, and F. Wong, "An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices," Opt. Lasers Eng. 44, 1078-1087 (2006).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Ostendorf, A.

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

Ozerov, I.

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, "Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling," Appl. Phys. A 79, 771-774 (2004).
[CrossRef]

Paik, J. S.

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Park, C. O.

M. I. Park, C. S. Kim, C. O. Park, and S. C. Jeoung, "XRD studies on the femtosecond laser ablated single-crystal germanium in air," Opt. Lasers. Eng. 43, 1322-1329 (2005)
[CrossRef]

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Park, M.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

Park, M. I.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

M. I. Park, C. S. Kim, C. O. Park, and S. C. Jeoung, "XRD studies on the femtosecond laser ablated single-crystal germanium in air," Opt. Lasers. Eng. 43, 1322-1329 (2005)
[CrossRef]

Patrone, L.

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, "Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling," Appl. Phys. A 79, 771-774 (2004).
[CrossRef]

Petaccia, L.

V. R. Dhanak, A. Santoni, and L. Petaccia, "A high temperature X-ray absorption and valence band spectroscopy study of the Si(100) surface," J. Electron Spectrosc. Relat. Phenom. 114-116, 471 (2001).

Poprawe, R.

J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998).
[CrossRef]

Richardson, K.

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing, " Appl. Phys. A 77, 311-315 (2003).

Richardson, M.

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing, " Appl. Phys. A 77, 311-315 (2003).

Rudolph, P.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, "Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass," Appl. Phys. A 69, S763-S766 (1999).
[CrossRef]

Sanchez, F.

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

Santoni, A.

V. R. Dhanak, A. Santoni, and L. Petaccia, "A high temperature X-ray absorption and valence band spectroscopy study of the Si(100) surface," J. Electron Spectrosc. Relat. Phenom. 114-116, 471 (2001).

Seo, M. A.

Shah, L.

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing, " Appl. Phys. A 77, 311-315 (2003).

Simon, P.

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulsesm," Appl. Phys. A 79, 775-778 (2004).
[CrossRef]

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

Tönshoff, K. H.

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

Trtik, V.

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

Varela, M.

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Weichenhain, R.

J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998).
[CrossRef]

Wong, F.

C. Li, S. Nikumb, and F. Wong, "An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices," Opt. Lasers Eng. 44, 1078-1087 (2006).
[CrossRef]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Yagi, T.

T. Matsumura, A. Kazama, and T. Yagi, "Generation of debris in the femtosecond laser machining of a silicon substrate," Appl. Phys. A 81, 1393-1398 (2005).
[CrossRef]

Yahng, J. S.

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

Zhigilei, L. V.

L. V. Zhigilei and B. J. Garrison, "Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration," Appl. Phys. A 69, S75-S80 (1999).

Zoubir, A.

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing, " Appl. Phys. A 77, 311-315 (2003).

Appl. Phys. A (11)

N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

T. Matsumura, A. Kazama, and T. Yagi, "Generation of debris in the femtosecond laser machining of a silicon substrate," Appl. Phys. A 81, 1393-1398 (2005).
[CrossRef]

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulsesm," Appl. Phys. A 79, 775-778 (2004).
[CrossRef]

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing, " Appl. Phys. A 77, 311-315 (2003).

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, "Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass," Appl. Phys. A 69, S763-S766 (1999).
[CrossRef]

C. Y. Chien and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[CrossRef]

S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999).
[CrossRef]

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, "Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling," Appl. Phys. A 79, 771-774 (2004).
[CrossRef]

L. V. Zhigilei and B. J. Garrison, "Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration," Appl. Phys. A 69, S75-S80 (1999).

Appl. Phys. B (2)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

Appl. Surf. Sci. (4)

J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

J. Appl. Phys. (1)

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, "Efficiency of silicon micromachining by femtosecond laser pulses in ambient air," J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (1)

V. R. Dhanak, A. Santoni, and L. Petaccia, "A high temperature X-ray absorption and valence band spectroscopy study of the Si(100) surface," J. Electron Spectrosc. Relat. Phenom. 114-116, 471 (2001).

J. Korean Phys. Soc. (1)

J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).

J. Mater. Process. Technol. (1)

T. C. Chen and R. B. Darling, "Parametric studies on pulsed near ultraviolet frequency tripled Nd:YAG laser micromachining of sapphire and silicon," J. Mater. Process. Technol. 169, 214-218 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

J. Li and G. K. Ananthasuresh, "A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices," J. Micromech. Microeng. 11,38-47 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (2)

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006).
[CrossRef]

C. Li, S. Nikumb, and F. Wong, "An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices," Opt. Lasers Eng. 44, 1078-1087 (2006).
[CrossRef]

Opt. Lasers. Eng. (1)

M. I. Park, C. S. Kim, C. O. Park, and S. C. Jeoung, "XRD studies on the femtosecond laser ablated single-crystal germanium in air," Opt. Lasers. Eng. 43, 1322-1329 (2005)
[CrossRef]

Phys. Rev. Lett. (1)

L. Gavioli, M. G. Betti, and C. Mariani, "Dynamics-induced surface metallization of Si(100)," Phys. Rev. Lett. 77, 3869-3872 (1996).
[CrossRef] [PubMed]

Other (2)

J. S. Yahng, J. R. Nam, and S. C. Jeoung are preparing a manuscript to be called "Temperature dependence of ultrafast laser ablation threshold of crystalline silicone."

H. Haferkamp, and D. Seebaum, "Beam delivery by adaptive optics for material processing applications using high-power CO2 lasers," in Laser Materials Processing: Industrial and Microelectronics Applications, E. Beyer, M. Cantello, A. V. La Rocca, L. D. Laude, F. O. Olsen, G. Sepold, eds., Proc. SPIE 2207, 156-164 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the hybridization laser processing setup (DM: dichroic mirror, BS: beam splitter, PD: photo diode, PBS: polarization beam splitter, HWP: half wave plate, ND: neutral density filter)

Fig. 2.
Fig. 2.

AFM and SEM images of the processed Si wafer surfaces for (a) the nanosecond laser only and (b) the femtosecond laser only, and hybridization processing with a time delay of (c) -300, (d) 0, (e) +300 ns.

Fig. 3.
Fig. 3.

(a) AFM cross sectional depth profile of the processed surface of a silicon wafer for various time delays. (b) Pulse trail of the laser pulses used in the hybridization process of a silicon wafer.

Fig. 4.
Fig. 4.

Cross-sectional ablation area of a silicon wafer as a function of delay time. The temporal feature of nanosecond laser pulse (dotted line) is shown for comparison.

Metrics