Abstract

Automated pulse compression through adaptive phase distortion compensation and compensation of gain narrowing of femtosecond regeneratively amplified pulses (2.5 mJ, 27.6 fs, transform limited) using a MIIPS-enabled pre-amplification pulse shaper is demonstrated. Rigorous characterization of the shaped pulses is presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. 4. Characterization of the phase of ultrashort laser pulses," Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  2. M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference 6; binary phase shaping," Opt. Express 12, 1061 - 1066 (2004).
    [CrossRef] [PubMed]
  3. B. Xu, J. M Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, " Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
    [CrossRef]
  4. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference I; Control of multiphoton processes in condensed phases," J. Phys. Chem. 106, 9369-9373 (2002).
    [CrossRef]
  5. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses." J. Chem. Phys. 118,3187-3196 (2003).
    [CrossRef]
  6. F. Lindner, G. G. Paulus, F. Grabson, A. Dreischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:Sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
    [CrossRef]
  7. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  8. A. Efimov, and D. H. Reitze, "Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier," Opt. Lett. 23, 1612-1615 (1998).
    [CrossRef]
  9. P. Turnois "Acousto-optic programmable dispersion filter for adaptive compensation of group delay time dispersion in laser systems," Opt. Commun. 140, 245-249 (1997).
    [CrossRef]
  10. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000).
    [CrossRef]
  11. H. Takada, M. Kakehata, and K. Torizuka, "Large-Ratio stretch and recompression of sub-10-fs pulses utilizing dispersion managed devices and spatial light modulator," Appl. Phys. B 74, S253-S257 (2002).
    [CrossRef]
  12. K. Ohno, T. Tanabe, and F. Kannari, " Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces," J. Opt. Soc. Am. B 19, 2781-2790 (2002)
    [CrossRef]

2006 (1)

2004 (2)

2003 (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses." J. Chem. Phys. 118,3187-3196 (2003).
[CrossRef]

2002 (4)

F. Lindner, G. G. Paulus, F. Grabson, A. Dreischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:Sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

H. Takada, M. Kakehata, and K. Torizuka, "Large-Ratio stretch and recompression of sub-10-fs pulses utilizing dispersion managed devices and spatial light modulator," Appl. Phys. B 74, S253-S257 (2002).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference I; Control of multiphoton processes in condensed phases," J. Phys. Chem. 106, 9369-9373 (2002).
[CrossRef]

K. Ohno, T. Tanabe, and F. Kannari, " Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces," J. Opt. Soc. Am. B 19, 2781-2790 (2002)
[CrossRef]

2000 (2)

1998 (1)

1997 (1)

P. Turnois "Acousto-optic programmable dispersion filter for adaptive compensation of group delay time dispersion in laser systems," Opt. Commun. 140, 245-249 (1997).
[CrossRef]

Cheng, Z.

Comstock, M.

Dantus, M.

Dela Cruz, J. M.

Dreischuh, A.

F. Lindner, G. G. Paulus, F. Grabson, A. Dreischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:Sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Efimov, A.

Grabson, F.

F. Lindner, G. G. Paulus, F. Grabson, A. Dreischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:Sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Gunn, J. M

Kakehata, M.

H. Takada, M. Kakehata, and K. Torizuka, "Large-Ratio stretch and recompression of sub-10-fs pulses utilizing dispersion managed devices and spatial light modulator," Appl. Phys. B 74, S253-S257 (2002).
[CrossRef]

Kannari, F.

Laude, V.

Lindner, F.

F. Lindner, G. G. Paulus, F. Grabson, A. Dreischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:Sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Lozovoy, V. V.

Ohno, K.

Pastirk, I.

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. 4. Characterization of the phase of ultrashort laser pulses," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference 6; binary phase shaping," Opt. Express 12, 1061 - 1066 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses." J. Chem. Phys. 118,3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference I; Control of multiphoton processes in condensed phases," J. Phys. Chem. 106, 9369-9373 (2002).
[CrossRef]

Paulus, G. G.

F. Lindner, G. G. Paulus, F. Grabson, A. Dreischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:Sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Reitze, D. H.

Spielmann, Ch.

Takada, H.

H. Takada, M. Kakehata, and K. Torizuka, "Large-Ratio stretch and recompression of sub-10-fs pulses utilizing dispersion managed devices and spatial light modulator," Appl. Phys. B 74, S253-S257 (2002).
[CrossRef]

Tanabe, T.

Torizuka, K.

H. Takada, M. Kakehata, and K. Torizuka, "Large-Ratio stretch and recompression of sub-10-fs pulses utilizing dispersion managed devices and spatial light modulator," Appl. Phys. B 74, S253-S257 (2002).
[CrossRef]

Tournois, P.

Turnois, P.

P. Turnois "Acousto-optic programmable dispersion filter for adaptive compensation of group delay time dispersion in laser systems," Opt. Commun. 140, 245-249 (1997).
[CrossRef]

Verluise, F.

Walowicz, K. A.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses." J. Chem. Phys. 118,3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference I; Control of multiphoton processes in condensed phases," J. Phys. Chem. 106, 9369-9373 (2002).
[CrossRef]

Walther, H.

F. Lindner, G. G. Paulus, F. Grabson, A. Dreischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:Sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Xu, B.

Appl. Phys. B (1)

H. Takada, M. Kakehata, and K. Torizuka, "Large-Ratio stretch and recompression of sub-10-fs pulses utilizing dispersion managed devices and spatial light modulator," Appl. Phys. B 74, S253-S257 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. Lindner, G. G. Paulus, F. Grabson, A. Dreischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:Sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses." J. Chem. Phys. 118,3187-3196 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference I; Control of multiphoton processes in condensed phases," J. Phys. Chem. 106, 9369-9373 (2002).
[CrossRef]

Opt. Commun. (1)

P. Turnois "Acousto-optic programmable dispersion filter for adaptive compensation of group delay time dispersion in laser systems," Opt. Commun. 140, 245-249 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experiment. The seed fs laser with 45 nm full-width at half maximum was sent through the pre-amplification pulse shaper. Shaped pulses were then amplified in the regenerative amplifier and sent through the second pulse shaper. The beam was frequency doubled and the signal was detected by a compact spectrometer.

Fig. 2.
Fig. 2.

Automated pulse compression of amplified laser pulses using a MIIPS enabled pre-amplification pulse shaper. (a) Spectrum of the fundamental output. (b) SHG Spectra of the uncompensated pulses, with 75 fs pulse duration. (c) Measured phase distortions. (d) SHG spectra of the resulting 32.6 fs compressed pulses.

Fig. 3.
Fig. 3.

Accurate delivery of amplified femtosecond pulses shaped by smooth phase functions. The pulses were first corrected by MIIPS before the desired phase functions were introduced. a) SHG spectrum of pulses comressed by MIIPS. b) SHG spectrum of amplified pulses after phase correction and shaped by a cosine function using the pre-amplification pulse shaper. c) SHG spectrum of phase corrected pulses shaped by a cosine function by the external pulse shaper. d) SHG spectrum of the amplified phase-corrected pulses that are shaped by a cosine function by the pre-amplification pulse shaper and then shaped with a complimentary (π-shifted) phase function by the external shaper. Notice that the phase introduced prior to amplification exactly cancels the phase introduced post amplification. The insert shows the two phase functions used.

Fig. 4.
Fig. 4.

Accurate delivery of amplified binary phase shaped femtosecond pulses. The pulses were first corrected by the pre-amplification pulse shaper (SHG spectrum, red dashed line) before the binary step functions was introduced (solid line). The insert shows the correction function with the binary step (solid black line). The second pulse shaper was used to introduce the complimentary binary function (red dashed line). b) SHG FROG trace of the amplified binary phase shaped pulses. c) SHG FROG trace of the pulses after the complimentary step function is introduced by the second shaper, the pulses once again become transform limited.

Fig. 5.
Fig. 5.

Increasing bandwidth through amplitude modulation and compression by MIIPS leads to shorter pulses. Spectra (top panel) of the unmodified (a) and amplitude shaped (b) amplified laser with corresponding FWHM. Measured time duration of the pulses (bottom panel) without (c) and with (d) amplitude modulation.

Metrics