Abstract

This paper reports the first quantum key distribution experiment implemented with a 10-GHz clock frequency. We used a 10-GHz actively mode-locked fiber laser as a source of short coherent pulses and single photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides. The use of short pulses and low-jitter up-conversion detectors significantly reduced the bit errors caused by detector dark counts even after long-distance transmission of a weak coherent state pulse. We employed the differential phase shift quantum key distribution protocol, and generated sifted keys at a rate of 3.7 kbit/s over a 105 km fiber with a bit error rate of 9.7%.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  2. P. D. Townsend, “Secure key distribution system based on quantum cryptography” Electron. Lett. 30809 (1994).
    [Crossref]
  3. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 342116 (1998).
    [Crossref]
  4. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, “Experiments on long wavelength (1550 nm) “plug and play” quantum cryptography systems,” Opt. Express 4383 (1999).
    [Crossref] [PubMed]
  5. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 441 (2002).
    [Crossref]
  6. A. Yoshizawa, R. Kaji, and H. Tsuchida,“10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz,” Jpn. J. Appl. Phys. 43 ( 2004) L735.
  7. T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797 (2004).
    [Crossref] [PubMed]
  8. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
    [Crossref]
  9. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 843762–3764 (2004).
    [Crossref]
  10. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
    [Crossref]
  11. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
    [Crossref] [PubMed]
  12. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
    [Crossref]
  13. K. Inoue and T. Honjo, “Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
    [Crossref]
  14. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
    [Crossref]
  15. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
    [Crossref]
  16. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.,  30, 1725 (2005).
    [Crossref] [PubMed]

2006 (2)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

2005 (4)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.,  30, 1725 (2005).
[Crossref] [PubMed]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

2004 (2)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 843762–3764 (2004).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797 (2004).
[Crossref] [PubMed]

2003 (1)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

2002 (3)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 441 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

1999 (1)

1998 (1)

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 342116 (1998).
[Crossref]

1994 (1)

P. D. Townsend, “Secure key distribution system based on quantum cryptography” Electron. Lett. 30809 (1994).
[Crossref]

Bourennane, M.

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

Diamanti, E.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.,  30, 1725 (2005).
[Crossref] [PubMed]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

Fejer, M. M.

Gautier, J. D.

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 342116 (1998).
[Crossref]

Gibson, F.

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 441 (2002).
[Crossref]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 342116 (1998).
[Crossref]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 843762–3764 (2004).
[Crossref]

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 441 (2002).
[Crossref]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 342116 (1998).
[Crossref]

Hening, A.

Honjo, T.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797 (2004).
[Crossref] [PubMed]

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797 (2004).
[Crossref] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Jonsson, P.

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida,“10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz,” Jpn. J. Appl. Phys. 43 ( 2004) L735.

Karlsson, A.

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

Langrock, C.

Ljunggren, D.

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 441 (2002).
[Crossref]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 342116 (1998).
[Crossref]

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

Roussev, R. V.

Shields, A. J.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 843762–3764 (2004).
[Crossref]

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 441 (2002).
[Crossref]

Sundberg, E.

Takahashi, H.

Takesue, H.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.,  30, 1725 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Townsend, P. D.

P. D. Townsend, “Secure key distribution system based on quantum cryptography” Electron. Lett. 30809 (1994).
[Crossref]

Tsegaye, T.

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida,“10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz,” Jpn. J. Appl. Phys. 43 ( 2004) L735.

Waks, E.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Yamamoto, Y.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.,  30, 1725 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida,“10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz,” Jpn. J. Appl. Phys. 43 ( 2004) L735.

Yuan, Z. L.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 843762–3764 (2004).
[Crossref]

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 441 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 342116 (1998).
[Crossref]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

Appl. Phys. Lett. (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 843762–3764 (2004).
[Crossref]

Electron. Lett. (2)

P. D. Townsend, “Secure key distribution system based on quantum cryptography” Electron. Lett. 30809 (1994).
[Crossref]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 342116 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida,“10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz,” Jpn. J. Appl. Phys. 43 ( 2004) L735.

New J. Phys. (3)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low-jitter up-conversion detectors for telecom wavelength QKD,” New J. Phys. 832 (2006).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 441 (2002).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. 7, 232 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (4)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68, 022317 (2003).
[Crossref]

K. Inoue and T. Honjo, “Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack,” Phys. Rev. A 71, 042305 (2005).
[Crossref]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55-µm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

Phys. Rev. Lett. (1)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of differential phase shift quantum key distribution.

Fig. 2.
Fig. 2.

10-GHz pulse train from a fiber mode-locked laser monitored by a sampling oscilloscope with a 53 GHz bandwidth.

Fig. 3.
Fig. 3.

Configuration of up-conversion detector.

Fig. 4.
Fig. 4.

(a) Typical histogram of detection signals from the up-conversion detector at a count rate of 300,000. (b) Full widths at half maximum and tenth maximum as a function of count rate.

Fig. 5.
Fig. 5.

(a) Sifted key rate and (b) estimated error rate caused by dark counts as a function of time window width at 105 km key distribution.

Fig. 6.
Fig. 6.

Error rates (squares) and estimated error rates caused by dark counts (circles) as a function of transmission fiber length.

Tables (1)

Tables Icon

Table I. Summary of fiber transmission experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ψ = ( 1 N k = 1 N e i ϕ k k 1 ) ( 1 N k = 1 N e i ϕ k k 2 ) ( 1 N k = 1 N e i ϕ k k M ) ,
e d = f c d Δ t 2 R sifted ( Δ t )

Metrics