Abstract

This paper reports the first quantum key distribution experiment implemented with a 10-GHz clock frequency. We used a 10-GHz actively mode-locked fiber laser as a source of short coherent pulses and single photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides. The use of short pulses and low-jitter up-conversion detectors significantly reduced the bit errors caused by detector dark counts even after long-distance transmission of a weak coherent state pulse. We employed the differential phase shift quantum key distribution protocol, and generated sifted keys at a rate of 3.7 kbit/s over a 105 km fiber with a bit error rate of 9.7%.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  2. P. D. Townsend, "Secure key distribution system based on quantum cryptography," Electron. Lett. 30809 (1994).
    [CrossRef]
  3. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 342116 (1998).
    [CrossRef]
  4. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren and E. Sundberg, "Experiments on long wavelength (1550 nm) "plug and play" quantum cryptography systems," Opt. Express 4383 (1999).
    [CrossRef] [PubMed]
  5. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 441 (2002).
    [CrossRef]
  6. A. Yoshizawa, R. Kaji and H. Tsuchida,"10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43 (2004) L735.
  7. T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797 (2004).
    [CrossRef] [PubMed]
  8. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
    [CrossRef]
  9. C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 843762-3764 (2004).
    [CrossRef]
  10. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
    [CrossRef]
  11. K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
    [CrossRef] [PubMed]
  12. K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
    [CrossRef]
  13. K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
    [CrossRef]
  14. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-keydistribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005).
    [CrossRef]
  15. E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006).
    [CrossRef]
  16. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett.,  30, 1725 (2005).
    [CrossRef] [PubMed]

2006 (2)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006).
[CrossRef]

2005 (4)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett.,  30, 1725 (2005).
[CrossRef] [PubMed]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
[CrossRef]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-keydistribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

2004 (3)

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 843762-3764 (2004).
[CrossRef]

A. Yoshizawa, R. Kaji and H. Tsuchida,"10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43 (2004) L735.

T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797 (2004).
[CrossRef] [PubMed]

2003 (1)

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
[CrossRef]

2002 (3)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 441 (2002).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

1999 (1)

1998 (1)

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 342116 (1998).
[CrossRef]

1994 (1)

P. D. Townsend, "Secure key distribution system based on quantum cryptography," Electron. Lett. 30809 (1994).
[CrossRef]

Bourennane, M.

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

Diamanti, E.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-keydistribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005).
[CrossRef]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett.,  30, 1725 (2005).
[CrossRef] [PubMed]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

Fejer, M. M.

Gautier, J. D.

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 342116 (1998).
[CrossRef]

Gibson, F.

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 441 (2002).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 342116 (1998).
[CrossRef]

Gobby, C.

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 843762-3764 (2004).
[CrossRef]

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 441 (2002).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 342116 (1998).
[CrossRef]

Hening, A.

Honjo, T.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-keydistribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
[CrossRef]

T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797 (2004).
[CrossRef] [PubMed]

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-keydistribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
[CrossRef]

T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797 (2004).
[CrossRef] [PubMed]

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Jonsson, P.

Kaji, R.

A. Yoshizawa, R. Kaji and H. Tsuchida,"10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43 (2004) L735.

Karlsson, A.

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

Langrock, C.

Ljunggren, D.

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 441 (2002).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 342116 (1998).
[CrossRef]

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

Roussev, R. V.

Shields, A. J.

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 843762-3764 (2004).
[CrossRef]

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 441 (2002).
[CrossRef]

Sundberg, E.

Takahashi, H.

Takesue, H.

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006).
[CrossRef]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett.,  30, 1725 (2005).
[CrossRef] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-keydistribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Townsend, P. D.

P. D. Townsend, "Secure key distribution system based on quantum cryptography," Electron. Lett. 30809 (1994).
[CrossRef]

Tsegaye, T.

Tsuchida, H.

A. Yoshizawa, R. Kaji and H. Tsuchida,"10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43 (2004) L735.

Waks, E.

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Yamamoto, Y.

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006).
[CrossRef]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett.,  30, 1725 (2005).
[CrossRef] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-keydistribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
[CrossRef]

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Yoshizawa, A.

A. Yoshizawa, R. Kaji and H. Tsuchida,"10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43 (2004) L735.

Yuan, Z. L.

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 843762-3764 (2004).
[CrossRef]

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 441 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 342116 (1998).
[CrossRef]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 843762-3764 (2004).
[CrossRef]

Electron. Lett. (2)

P. D. Townsend, "Secure key distribution system based on quantum cryptography," Electron. Lett. 30809 (1994).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 342116 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Yoshizawa, R. Kaji and H. Tsuchida,"10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz," Jpn. J. Appl. Phys. 43 (2004) L735.

New J. Phys. (3)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low-jitter up-conversion detectors for telecom wavelength QKD," New J. Phys. 832 (2006).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67 km with a plug & play system," New J. Phys. 441 (2002).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7, 232 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (4)

K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quantum key distribution using coherent light," Phys. Rev. A 68, 022317 (2003).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
[CrossRef]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, "Performance of various quantum-keydistribution systems using 1.55-μm up-conversion single-photon detectors," Phys. Rev. A 72, 052311 (2005).
[CrossRef]

E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of differential phase shift quantum key distribution.

Fig. 2.
Fig. 2.

10-GHz pulse train from a fiber mode-locked laser monitored by a sampling oscilloscope with a 53 GHz bandwidth.

Fig. 3.
Fig. 3.

Configuration of up-conversion detector.

Fig. 4.
Fig. 4.

(a) Typical histogram of detection signals from the up-conversion detector at a count rate of 300,000. (b) Full widths at half maximum and tenth maximum as a function of count rate.

Fig. 5.
Fig. 5.

(a) Sifted key rate and (b) estimated error rate caused by dark counts as a function of time window width at 105 km key distribution.

Fig. 6.
Fig. 6.

Error rates (squares) and estimated error rates caused by dark counts (circles) as a function of transmission fiber length.

Tables (1)

Tables Icon

Table I. Summary of fiber transmission experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ψ = ( 1 N k = 1 N e i ϕ k k 1 ) ( 1 N k = 1 N e i ϕ k k 2 ) ( 1 N k = 1 N e i ϕ k k M ) ,
e d = f c d Δ t 2 R sifted ( Δ t )

Metrics