Abstract

We experimentally demonstrate cascaded silicon micro-ring modulators as the key components of a WDM interconnection system. We show clean eye-diagrams when each of the four micro-ring modulators is modulated at 4 Gbit/s. We show that optical inter-channel crosstalk is negligible with a channel spacing of 1.3 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum. Electron. 6,1312-1317 (2000).
    [CrossRef]
  2. J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
    [CrossRef]
  3. K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  4. Y. A. Vlasov, and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  5. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  6. G. Gunn, "CMOS photonicsTM - SOI learns a new trick," in Proceedings of IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 7-13.
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  8. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005).
    [CrossRef]
  9. T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, "Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation," IEEE Photon. Technol. Lett. 17, 414-416 (2005).
    [CrossRef]
  10. T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width" IEEE Photon. Technol. Lett. 17, 567-569 (2005).
    [CrossRef]
  11. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightwave Technol. 20, 1968-1975 (2002).
    [CrossRef]
  12. N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
    [CrossRef]
  13. T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chan, and Y.-L. Lam "High performance quantum well intermixed superluminescent diodes," Meas. Sci. Technol. 15, 1591-1595 (2004).
    [CrossRef]
  14. R. A. Soref, and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  15. M. S. Rasras, D. M. Gill, S. S. Patel, A. E. White, K. Tu, Y. Chen, D. N. Carothers, A. T. Pomerene, M. J. Grove, D. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, "Tunable Narrowband Optical Filter in CMOS," in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (Institute of Electrical and Electronics Engineers, New York, 2006), PDP13.
  16. B. E. Little, J. T. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-6 (1997).
    [CrossRef] [PubMed]
  17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002).
    [CrossRef]
  18. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [CrossRef] [PubMed]
  19. Q. Xu, V. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
    [CrossRef] [PubMed]
  20. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
    [CrossRef]
  21. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
    [CrossRef] [PubMed]

2006

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
[CrossRef]

2005

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

Q. Xu, V. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, "Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation," IEEE Photon. Technol. Lett. 17, 414-416 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width" IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

2004

Y. A. Vlasov, and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chan, and Y.-L. Lam "High performance quantum well intermixed superluminescent diodes," Meas. Sci. Technol. 15, 1591-1595 (2004).
[CrossRef]

2002

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
[CrossRef]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002).
[CrossRef]

2001

2000

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum. Electron. 6,1312-1317 (2000).
[CrossRef]

1997

1987

R. A. Soref, and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Almeida, V.

Avramopoulos, H.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

Bennett, B. R.

R. A. Soref, and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Bintjas, C.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

Bond, A. E.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width" IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Borselli, M.

Cannon, D. D.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005).
[CrossRef]

Chan, Y.-C.

T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chan, and Y.-L. Lam "High performance quantum well intermixed superluminescent diodes," Meas. Sci. Technol. 15, 1591-1595 (2004).
[CrossRef]

Choi, S. J.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width" IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width" IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, "Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation," IEEE Photon. Technol. Lett. 17, 414-416 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, "Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation," IEEE Photon. Technol. Lett. 17, 414-416 (2005).
[CrossRef]

Chu, S. T.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Dalton, L. R.

Dapkus, P. D.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width" IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, "Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation," IEEE Photon. Technol. Lett. 17, 414-416 (2005).
[CrossRef]

Davis, J. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
[CrossRef]

Djordjev, K.

T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, "Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation," IEEE Photon. Technol. Lett. 17, 414-416 (2005).
[CrossRef]

Dosunmu, O. I.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005).
[CrossRef]

Emsley, M. K.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005).
[CrossRef]

Johnson, T. J.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Kalyvas, M.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

Kimerling, L. C.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005).
[CrossRef]

K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
[CrossRef]

Kippenberg, T. J.

Kohl, P. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
[CrossRef]

Laine, J. T.

Lam, Y.-L.

T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chan, and Y.-L. Lam "High performance quantum well intermixed superluminescent diodes," Meas. Sci. Technol. 15, 1591-1595 (2004).
[CrossRef]

Lee, K. K.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lim, D. R.

Lipson, M.

Little, B. E.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Martin, K. P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
[CrossRef]

McNab, S. J.

Meindl, J. D.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum. Electron. 6,1312-1317 (2000).
[CrossRef]

Mitsugi, S.

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
[CrossRef]

Ong, T.-K.

T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chan, and Y.-L. Lam "High performance quantum well intermixed superluminescent diodes," Meas. Sci. Technol. 15, 1591-1595 (2004).
[CrossRef]

Painter, O.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Patel, C. S.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
[CrossRef]

Pleros, N.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

Rabiei, P.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Sadagopan, T.

T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, "Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation," IEEE Photon. Technol. Lett. 17, 414-416 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width" IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Schmidt, B. S.

Soref, R. A.

R. A. Soref, and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Spillane, S. M.

Steier, W. H.

Sygletos, S.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

Theophilopoulos, G.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

Unlu, M. S.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005).
[CrossRef]

Vahala, K. J.

Vlasov, Y. A.

Xu, Q.

Yiannopoulos, K.

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

Yin, M.

T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chan, and Y.-L. Lam "High performance quantum well intermixed superluminescent diodes," Meas. Sci. Technol. 15, 1591-1595 (2004).
[CrossRef]

Yu, Z.

T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chan, and Y.-L. Lam "High performance quantum well intermixed superluminescent diodes," Meas. Sci. Technol. 15, 1591-1595 (2004).
[CrossRef]

Zarkesh-Ha, P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
[CrossRef]

Zhang, C.

IBM J. Res. Dev.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. Dev. 46, 245-263 (2002).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum. Electron. 6,1312-1317 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, "Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation," IEEE Photon. Technol. Lett. 17, 414-416 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width" IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos, "Multiwavelength and power equalized SOA laser sources," IEEE Photon. Technol. Lett. 14, 693-695 (2002).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chan, and Y.-L. Lam "High performance quantum well intermixed superluminescent diodes," Meas. Sci. Technol. 15, 1591-1595 (2004).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
[CrossRef]

Other

M. S. Rasras, D. M. Gill, S. S. Patel, A. E. White, K. Tu, Y. Chen, D. N. Carothers, A. T. Pomerene, M. J. Grove, D. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, "Tunable Narrowband Optical Filter in CMOS," in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (Institute of Electrical and Electronics Engineers, New York, 2006), PDP13.

G. Gunn, "CMOS photonicsTM - SOI learns a new trick," in Proceedings of IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 7-13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of a WDM optical interconnection system with cascaded silicon ring resonators as a WDM modulator and demultiplexer. Det: detector.

Fig. 2.
Fig. 2.

Top-view microscopic picture of the fabricated modulators, showing two of the four ring modulators coupled to a straight waveguide.

Fig. 3.
Fig. 3.

Normalized transmission spectrum of the waveguide coupled to the 4 micro-ring modulators. The resonances of the four rings are identified and marked on the spectrum.

Fig. 4.
Fig. 4.

Eye-diagrams of the modulated optical output of the four channels at 4 Gbit/s. (a): channel 1 at 1558.1 nm. (b): channel 2 at 1556.8 nm. (b): channel 3 at 1552.9 nm. (b): channel 4 at 1549.5 nm.

Fig. 5.
Fig. 5.

Waveform of a bit ‘1’ in a pseudo-ransom bit sequence at the bit-rate of 6 Gbit/s. Black line: measured output optical power. Red line: simulated output optical power. Blue dotted line (associated with the right y-axis): the temporal change of resonant wavelength of the ring resonator assumed in the simulation.

Fig. 6.
Fig. 6.

Waveforms when ring 1 is modulated at 4 Gbit/s. Black line: output waveform at the resonant wavelength of ring 1. Blue line: output waveform at the resonant wavelength of ring 2. Green line: output waveform at the edge of ring-2 resonance. Red line: output waveform just outside of ring-2 resonance.

Metrics