Abstract

We report on enormous light-induced reversible strain effects in CdZnTe:V crystals, which lead to a remarkable enhancement of their nonlinear properties, such as electrostriction and electro-optic effects. Using both high resolution x-ray diffraction and optical interferometry we measure light-induced relative deformation of the initial crystalline lattice (changes in d-spacings) up to 0.15%. The experimental findings are attributed to light-induced breaking of the initial cubic crystalline symmetry. Our results point to a family of inorganic materials whose nonlinear properties can be remarkably enhanced by light, offering new possibilities for nonlinear frequency conversion, generation of Terahertz radiation, electro-optic modulation, and self-deflection of optical beams.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, in Optical Electronics in Modern Communication, Fifth Edition, (Oxford University Press, Oxford, 1997), Chap. 9.
  2. S. Shwartz, M. Segev and U. El-Hanany, "Self-deflection and all-optical beam steering in ZnCdTe," Opt Lett. 29, 760-762 (2004).
    [CrossRef] [PubMed]
  3. H. Landolt and R. Bornstein, Numerical Data and Functional Relationships in Science and Technology-New Series, Group III, Volume 11, K. H Hellwege, ed. (Springer-Verlag Berlin, 1979).
  4. R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, "Ferroelectricity in Zinc Cadmium Telluride," Phys. Rev. Lett. 62, 2744-2746 (1989).
    [CrossRef] [PubMed]
  5. M. C. Mondoloni, R. Triboulet, and J. Rioux, "Structural distortions from Ferroelectric Origin in Zn1-xCdxTe Semiconductor Alloys,"Solid State Commun. 75, 275-277 (1990).
    [CrossRef]
  6. P. Cheuvart, U. El-Hanany, D. Schneider and R. Triboulet, "CdZnTe Crystal Growth By Horizontal Bridgman Technique," J. Crystal Growth 101, 270-274 (1990).
    [CrossRef]
  7. W. L. Bond, "Precision Lattice Constant Determination," Acta Cryst. 13, 814-816 (1960).
    [CrossRef]
  8. Note that is positive in both geometries, suggesting that the net (electro-optic) refractive index change in the geometry depicted in Fig. 3 is somewhat larger than the one measured in the geometry shown in Fig. 2 (because > 0 in Fig. 2 whereas ΔL< 0 in Fig. 3).
  9. J. F. Nye, Physical Properties of Crystals, (Oxford University Press, Oxford, 2001).
  10. D. O. Caplan, G. S. Kanter, and P. Kumar, "Characterization of dynamic optical nonlinearities by continuous time-resolved Z-scan,"Opt. Lett. 21, 1342-1344 (1996).
    [CrossRef] [PubMed]

2004 (1)

S. Shwartz, M. Segev and U. El-Hanany, "Self-deflection and all-optical beam steering in ZnCdTe," Opt Lett. 29, 760-762 (2004).
[CrossRef] [PubMed]

1996 (1)

1990 (2)

M. C. Mondoloni, R. Triboulet, and J. Rioux, "Structural distortions from Ferroelectric Origin in Zn1-xCdxTe Semiconductor Alloys,"Solid State Commun. 75, 275-277 (1990).
[CrossRef]

P. Cheuvart, U. El-Hanany, D. Schneider and R. Triboulet, "CdZnTe Crystal Growth By Horizontal Bridgman Technique," J. Crystal Growth 101, 270-274 (1990).
[CrossRef]

1989 (1)

R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, "Ferroelectricity in Zinc Cadmium Telluride," Phys. Rev. Lett. 62, 2744-2746 (1989).
[CrossRef] [PubMed]

1960 (1)

W. L. Bond, "Precision Lattice Constant Determination," Acta Cryst. 13, 814-816 (1960).
[CrossRef]

Benguigui, L.

R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, "Ferroelectricity in Zinc Cadmium Telluride," Phys. Rev. Lett. 62, 2744-2746 (1989).
[CrossRef] [PubMed]

Bond, W. L.

W. L. Bond, "Precision Lattice Constant Determination," Acta Cryst. 13, 814-816 (1960).
[CrossRef]

Caplan, D. O.

Cheuvart, P.

P. Cheuvart, U. El-Hanany, D. Schneider and R. Triboulet, "CdZnTe Crystal Growth By Horizontal Bridgman Technique," J. Crystal Growth 101, 270-274 (1990).
[CrossRef]

El-Hanany, U.

S. Shwartz, M. Segev and U. El-Hanany, "Self-deflection and all-optical beam steering in ZnCdTe," Opt Lett. 29, 760-762 (2004).
[CrossRef] [PubMed]

P. Cheuvart, U. El-Hanany, D. Schneider and R. Triboulet, "CdZnTe Crystal Growth By Horizontal Bridgman Technique," J. Crystal Growth 101, 270-274 (1990).
[CrossRef]

Kanter, G. S.

Kumar, P.

Mondoloni, M. C.

M. C. Mondoloni, R. Triboulet, and J. Rioux, "Structural distortions from Ferroelectric Origin in Zn1-xCdxTe Semiconductor Alloys,"Solid State Commun. 75, 275-277 (1990).
[CrossRef]

Muranevich, E.

R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, "Ferroelectricity in Zinc Cadmium Telluride," Phys. Rev. Lett. 62, 2744-2746 (1989).
[CrossRef] [PubMed]

Nkum, R.

R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, "Ferroelectricity in Zinc Cadmium Telluride," Phys. Rev. Lett. 62, 2744-2746 (1989).
[CrossRef] [PubMed]

Rioux, J.

M. C. Mondoloni, R. Triboulet, and J. Rioux, "Structural distortions from Ferroelectric Origin in Zn1-xCdxTe Semiconductor Alloys,"Solid State Commun. 75, 275-277 (1990).
[CrossRef]

Schneider, D.

P. Cheuvart, U. El-Hanany, D. Schneider and R. Triboulet, "CdZnTe Crystal Growth By Horizontal Bridgman Technique," J. Crystal Growth 101, 270-274 (1990).
[CrossRef]

Segev, M.

S. Shwartz, M. Segev and U. El-Hanany, "Self-deflection and all-optical beam steering in ZnCdTe," Opt Lett. 29, 760-762 (2004).
[CrossRef] [PubMed]

Shwartz, S.

S. Shwartz, M. Segev and U. El-Hanany, "Self-deflection and all-optical beam steering in ZnCdTe," Opt Lett. 29, 760-762 (2004).
[CrossRef] [PubMed]

Triboulet, R.

P. Cheuvart, U. El-Hanany, D. Schneider and R. Triboulet, "CdZnTe Crystal Growth By Horizontal Bridgman Technique," J. Crystal Growth 101, 270-274 (1990).
[CrossRef]

M. C. Mondoloni, R. Triboulet, and J. Rioux, "Structural distortions from Ferroelectric Origin in Zn1-xCdxTe Semiconductor Alloys,"Solid State Commun. 75, 275-277 (1990).
[CrossRef]

Weil, R.

R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, "Ferroelectricity in Zinc Cadmium Telluride," Phys. Rev. Lett. 62, 2744-2746 (1989).
[CrossRef] [PubMed]

Acta Cryst. (1)

W. L. Bond, "Precision Lattice Constant Determination," Acta Cryst. 13, 814-816 (1960).
[CrossRef]

J. Crystal Growth (1)

P. Cheuvart, U. El-Hanany, D. Schneider and R. Triboulet, "CdZnTe Crystal Growth By Horizontal Bridgman Technique," J. Crystal Growth 101, 270-274 (1990).
[CrossRef]

Opt Lett. (1)

S. Shwartz, M. Segev and U. El-Hanany, "Self-deflection and all-optical beam steering in ZnCdTe," Opt Lett. 29, 760-762 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, "Ferroelectricity in Zinc Cadmium Telluride," Phys. Rev. Lett. 62, 2744-2746 (1989).
[CrossRef] [PubMed]

Solid State Commun. (1)

M. C. Mondoloni, R. Triboulet, and J. Rioux, "Structural distortions from Ferroelectric Origin in Zn1-xCdxTe Semiconductor Alloys,"Solid State Commun. 75, 275-277 (1990).
[CrossRef]

Other (4)

H. Landolt and R. Bornstein, Numerical Data and Functional Relationships in Science and Technology-New Series, Group III, Volume 11, K. H Hellwege, ed. (Springer-Verlag Berlin, 1979).

A. Yariv, in Optical Electronics in Modern Communication, Fifth Edition, (Oxford University Press, Oxford, 1997), Chap. 9.

Note that is positive in both geometries, suggesting that the net (electro-optic) refractive index change in the geometry depicted in Fig. 3 is somewhat larger than the one measured in the geometry shown in Fig. 2 (because > 0 in Fig. 2 whereas ΔL< 0 in Fig. 3).

J. F. Nye, Physical Properties of Crystals, (Oxford University Press, Oxford, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental results displaying light-induced tensile strain (lattice expansion) measured through x-ray diffraction (a, b) and optical interferometry (c, d). The interferometric method is illustrated at the bottom right panel. (a) Light-induced change (blue diamonds) and change in the absence of light illumination (pink squares) in the (004) d-spacing (left-hand axis) and strain (right-hand axis) vs. an applied electric field. The light-induced strain measurements are taken at a constant light intensity of 253 mW/cm2. (b) Light-induced change in the (004) d-spacing (left-hand axis) and strain (right-hand axis) vs. light intensity at a fixed applied electric field of 6 kV/cm. In both (a) and (b) experiments, x-ray diffraction is taken from the (001)-plane. (c) Light-induced expansion of the crystal (left-hand axis) and strain (right- hand axis) vs. an applied electric field at a constant light intensity of 730 mW/cm2. (d) Light-induced expansion of the crystal (left-hand axis) and strain (right- hand axis) vs. light intensity at a fixed applied electric field of 6 kV/cm. All interferometric measurements represent light reflection from the (001)-plane, and are taken with an electric field applied in the direction and the light beam propagating through the crystal along the <110̄> direction. The intensity of Beam 1 is roughly 1 mW/cm2, which is negligible compared with the intensity of Beam 2.

Fig. 2.
Fig. 2.

Experimental results of eff Δn measurements. (a) eff Δn vs. applied electric field at a constant light intensity of 730 mW/cm2. (b) eff Δn vs. light intensity at a fixed applied electric field of 6 kV/cm. All interferometric measurements represent eff Δn in the <001> direction, and are taken with the electric field applied in the <110> direction and the light beam inducing eff Δn propagating through the crystal along the <110̄> direction.

Fig. 3.
Fig. 3.

Experimental results presenting light-induced compressive strain (lattice contraction) in the crystal and Δneff in an experimental geometry (with respect to the crystalline axes) different than that of Figs. 1 and 2. Results are taken through interference measurements, with the electric field applied in the <001> direction and the light beam propagating through the crystal in the <110̄> direction. The data in (a, b) is taken with the interferometer of Fig. 1, through light reflection from the (110) plane. The data in (c, d) is taken with the interferometer of Fig. 2, by propagating the probe beam through the crystal in the <110> direction (a) Contraction of the crystal (left-hand axis) and the induced strain (right-hand axis) vs. applied electric field measured at a constant light intensity of 331 mW/cm2. (b) Contraction of the crystal (left-hand axis) and the induced strain (right-hand axis) vs. light intensity measured at a fixed applied electric field of 4 kV/cm. (c) Δneff vs. applied electric field measured at a constant light intensity of 378 mW/cm2.

Metrics