Abstract

We report the first observation of enhanced third-order nonlinear effects in AlGaAs nanowires. AlGaAs nanowaveguides with widths varying from 100 to 600nm were fabricated and characterized. Nonlinear phase shifts of ~π were experimentally observed at 1.55µm with peak powers of 30–40W in 600µm long, 550nm wide guides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  2. P. N. Prasad, Nanophotonics, (John Wiley and Sons, New York, 2004).
    [CrossRef]
  3. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12,2864-2869 (2004).
    [CrossRef] [PubMed]
  5. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12,3209-3217 (2004).
    [CrossRef] [PubMed]
  6. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Express 13,6848-6855 (2005).
    [CrossRef] [PubMed]
  7. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12,5082-5087 (2004).
    [CrossRef] [PubMed]
  8. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, "Supercontinuum generation in tapered bismuth silicate fibres," Electron. Lett. 41,795-797 (2005).
    [CrossRef]
  9. V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003).
    [CrossRef] [PubMed]
  10. G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41,400-402 (2005).
    [CrossRef]
  11. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14,82-87 (2006).
    [CrossRef] [PubMed]
  12. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004)
    [CrossRef] [PubMed]
  13. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
    [CrossRef]
  14. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006)
    [CrossRef] [PubMed]
  15. G. I. Stegeman, A. Villeneuve, J. S. Aitchison and C. N. Ironside, "Nonlinear Integrated Optics and All-Optical Switching in Semiconductors," in Fabrication, Properties and Applications of Low-Dimensional Semiconductors, NATO ASI Series M. Balkanski and I. Yanchev, eds., (Kluwer Academic Publishers, Dordrecht, 1995), pp. 415-449.
  16. G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
    [CrossRef]
  17. R. El-Ganainy, S. Mokhov, K. G. Makris, D. N. Christodoulides, and R. Morandotti, "Solitons in dispersion-inverted AlGaAs nanowires," Opt. Express 14, 2277-2282 (2006).
    [CrossRef] [PubMed]
  18. L. Scaccabarozzi, X. Yu, M. L. Povinelli, S. Fan, M. M. Fejer and J. S. Harris, "Highly Efficient Birefringent Second Harmonic Generation in Submicron AlGaAs/AlxOy Waveguides," CLEO 2005 Technical Digest, paper CPDA10.
  19. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
    [CrossRef]
  20. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, "Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators," Opt. Lett. 29, 769-771 (2004).
    [CrossRef] [PubMed]
  21. J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
    [CrossRef]
  22. R. J. Deri and M. A. Emanuel, "Consistent formula for the refractive index of AlxGa1-xAs below the band edge," J. Appl. Phys. 77, 4667-4672 (1995).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).

2006 (3)

2005 (4)

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, "Supercontinuum generation in tapered bismuth silicate fibres," Electron. Lett. 41,795-797 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41,400-402 (2005).
[CrossRef]

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Express 13,6848-6855 (2005).
[CrossRef] [PubMed]

2004 (5)

2003 (3)

V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
[CrossRef]

1995 (1)

R. J. Deri and M. A. Emanuel, "Consistent formula for the refractive index of AlxGa1-xAs below the band edge," J. Appl. Phys. 77, 4667-4672 (1995).
[CrossRef]

1994 (2)

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
[CrossRef]

Aitchison, J. S.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Al-hemyari, K.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

Arakawa, Y.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Asimakis, S.

Birks, T. A.

Bolger, J. A.

Boyd, R. W.

Brambilla, G.

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, "Supercontinuum generation in tapered bismuth silicate fibres," Electron. Lett. 41,795-797 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41,400-402 (2005).
[CrossRef]

Cao, Q.

Chen, X.

Christodoulides, D. N.

Chu, T.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Cowan, A. R.

Deri, R. J.

R. J. Deri and M. A. Emanuel, "Consistent formula for the refractive index of AlxGa1-xAs below the band edge," J. Appl. Phys. 77, 4667-4672 (1995).
[CrossRef]

Dulkeith, E.

Ebendorff-Heidepriem, H.

Eggleton, B. J.

El-Ganainy, R.

Emanuel, M. A.

R. J. Deri and M. A. Emanuel, "Consistent formula for the refractive index of AlxGa1-xAs below the band edge," J. Appl. Phys. 77, 4667-4672 (1995).
[CrossRef]

Feng, X.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41,400-402 (2005).
[CrossRef]

Finazzi, V.

Foster, M. A.

Frampton, K.

Gaeta, A. L.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

George, A. K.

Grant, R. S.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Grover, R.

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, "Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators," Opt. Lett. 29, 769-771 (2004).
[CrossRef] [PubMed]

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
[CrossRef]

He, J.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Heebner, J. E.

Ho, P.-T.

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, "Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators," Opt. Lett. 29, 769-771 (2004).
[CrossRef] [PubMed]

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
[CrossRef]

Hu, L.

Ibrahim, T. A.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
[CrossRef]

Ironside, C. N.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Ishida, S.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
[CrossRef]

Kang, J.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Kang, J. U.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

Kennedy, G. T.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Knight, J. C.

Koizumi, F.

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, "Supercontinuum generation in tapered bismuth silicate fibres," Electron. Lett. 41,795-797 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41,400-402 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12,5082-5087 (2004).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Lepeshkin, N. N.

Lin, C.-H.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Lin, H.-H.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Lizé, Y. K.

Lou, J.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14,82-87 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mägi, E. C.

Makris, K. G.

Mason, M. W.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mokhov, S.

Monro, T. M.

Moore, R. C.

Morandotti, R.

Osgood, R. M.

Panoiu, N. C.

Petropoulos, P.

Qiu, J.

Ravi Kanth Kumar, V. V.

Richardson, D. J.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41,400-402 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, "Supercontinuum generation in tapered bismuth silicate fibres," Electron. Lett. 41,795-797 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12,5082-5087 (2004).
[CrossRef] [PubMed]

Rieger, G. W.

Russell, P. St. J.

Schweinsberg, A.

Sheik-Bahae, M.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Shen, Y.

Shirane, M.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Sibbett, W.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

St, P.

Stegeman, G. I.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

Steinvurzel, P.

Ta'eed, V. G.

Tong, L.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14,82-87 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Trebino, R.

Van, V.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
[CrossRef]

Villeneuve, A.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Vlasov, Y. A.

Wadsworth, W. J.

Wicks, G. W.

Yamada, H.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Yang, C. C.

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

Yang, Q.

Ye, Z.

Yokoyama, H.

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Young, J. F.

Zhang, J.

Appl. Phys. Lett. (1)

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, G. I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65,147-149 (1994).
[CrossRef]

Electron. Lett. (2)

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, "Supercontinuum generation in tapered bismuth silicate fibres," Electron. Lett. 41,795-797 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41,400-402 (2005).
[CrossRef]

IEEE J. Sel. Tops. Quantum Electron. (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, "Optical signal processing using Nonlinear Semiconductor Microring Resonators," IEEE J. Sel. Tops. Quantum Electron. 8,705-713 (2002).
[CrossRef]

Int. J. Nonlinear Opt. Phys. (1)

G. I.  Stegeman, A.  Villeneuve, J.  Kang, J. S.  Aitchison, C. N.  Ironside, K.  Al-hemyari, C. C.  Yang, C.-H.  Lin, H.-H.  Lin, G. T.  Kennedy, R. S.  Grant and W.  Sibbett, "AlGaAs below half Bandgap: The Silicon of Nonlinear Optical Materials," Int. J. Nonlinear Opt. Phys.  3,347-371 (1994).
[CrossRef]

J. Appl. Phys. (1)

R. J. Deri and M. A. Emanuel, "Consistent formula for the refractive index of AlxGa1-xAs below the band edge," J. Appl. Phys. 77, 4667-4672 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-Optic Silicon-Nanowire Waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005).
[CrossRef]

Nature (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express (9)

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12,2864-2869 (2004).
[CrossRef] [PubMed]

Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12,3209-3217 (2004).
[CrossRef] [PubMed]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Express 13,6848-6855 (2005).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12,5082-5087 (2004).
[CrossRef] [PubMed]

V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006)
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14,82-87 (2006).
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004)
[CrossRef] [PubMed]

R. El-Ganainy, S. Mokhov, K. G. Makris, D. N. Christodoulides, and R. Morandotti, "Solitons in dispersion-inverted AlGaAs nanowires," Opt. Express 14, 2277-2282 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (4)

L. Scaccabarozzi, X. Yu, M. L. Povinelli, S. Fan, M. M. Fejer and J. S. Harris, "Highly Efficient Birefringent Second Harmonic Generation in Submicron AlGaAs/AlxOy Waveguides," CLEO 2005 Technical Digest, paper CPDA10.

G. I. Stegeman, A. Villeneuve, J. S. Aitchison and C. N. Ironside, "Nonlinear Integrated Optics and All-Optical Switching in Semiconductors," in Fabrication, Properties and Applications of Low-Dimensional Semiconductors, NATO ASI Series M. Balkanski and I. Yanchev, eds., (Kluwer Academic Publishers, Dordrecht, 1995), pp. 415-449.

P. N. Prasad, Nanophotonics, (John Wiley and Sons, New York, 2004).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the nanowaveguide fabrication process. The first figure shows the deposited PECVD SiO2 (blue) onto the AlGaAs multilayer structure, and the definition of waveguides using e-beam lithography and PPMA resist (green). The second one shows the etching of the PECVD SiO2 mask using C2F6. The third one shows the semiconductor rib after deep etching with SiCl4.

Fig. 2.
Fig. 2.

SEM picture of the nanowire rib waveguide on a GaAs substrate.

Fig. 3.
Fig. 3.

Single channel as viewed from above (in the plane of the substrate).

Fig. 4.
Fig. 4.

The refractive index profile of the nanowaveguide used (left). The TM mode field profile (center) is primarily x-polarized whereas the TE mode field distribution (right) is mostly polarized in the y-direction.

Fig. 5.
Fig. 5.

Device transmission (red dots) as a function of nanowire length for a 550nm wide nanowire was measured as the ratio of the throughput-power just before the output objective lens to the input power just after the input objective lens. The nanowire loss coefficient was estimated form the slope of the blue solid line which takes into account a 29% coupling efficiency and 29% Fresnel losses in the input and output facets.

Fig. 6.
Fig. 6.

Apparatus used for measuring the nonlinear transmission and spectral broadening.

Fig. 7.
Fig. 7.

The throughput of the device versus the power input into the nanowire. The data is shown by the solid circles and the theory using the measured linear loss and the literature value of the three photon absorption coefficient is shown by the solid lines.

Fig. 8.
Fig. 8.

Spectral broadening measured for the L=0 and 600µm samples for an input power into the input facet of the sample of 38W (left). Simulations of the spectral broadening (right) obtained using the measured pulse temporal profile (retrieved from SHG FROG), the waveguide transmission parameters, and the known value of n2=1.5×10-13 cm2/W. The nonlinear phase shift deduced by matching simulations to experiment for the nanowire was 0.9π.

Fig. 9.
Fig. 9.

The power spectrum measured (left-hand-side) and simulated (right-hand-side) for a sample with L=600µm and W=550nm at two different input power levels.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d I d z = α 1 I α 2 I 2 α 3 I 3 ,
P out = P in 0 1.8 mm [ α 1 ( z ) P ( z ) + α 3 ( P ( z ) A eff ( z ) ) 2 P ( z ) ] d z
U ( z , T ) U ( 0 , T ) exp ( i k 0 n 2 0 z 1 A eff ( z ' ) { P in ( T ) 0 z ' [ α 1 ( z " ) P ( z " , T ) + α 3 ( P ( z " , T ) A eff ( z " ) ) 2 P ( z " , T ) ] d z " } d z ' )
S ˜ ( z , ω ) = + U ( z , T ) exp ( i ω T ) d T 2

Metrics