Abstract

Photoacoustic microscopy was developed to achieve volumetric imaging of the anatomy and functions of the subcutaneous microvasculature in both small animals and humans in vivo with high spatial resolution and high signal-to-background ratio. By following the skin contour in raster scanning, the ultrasonic transducer maintains focusing in the region of interest. Furthermore, off-focus lateral resolution is improved by using a synthetic-aperture focusing technique based on the virtual point detector concept. Structural images are acquired in both rats and humans, whereas functional images representing hemoglobin oxygen saturation are acquired in rats. After multiscale vesselness filtering, arterioles and venules in the image are separated based on the imaged oxygen saturation levels. Detailed structural information, such as vessel depth and spatial orientation, are revealed by volume rendering.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Barnhill, K. Fandrey, M. A. Levy, M. C. Mihm, and B. Hyman, "Angiogenesis and tumor progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma," Lab. Invest. 67, 331-337 (1992).
    [PubMed]
  2. H. Nakajima, T. Minabe, and N. Imanishi, "Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging," Plast. Reconstr. Surg. 102, 748-760 (1998).
    [CrossRef] [PubMed]
  3. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).
  4. R. R. Edelman, H. P. Mattle, D. J. Atkinson, and H. M. Hoogewoud, "MR angiography," Am. J. Roentgenol. 154, 937-946 (1990).
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
  6. F. A. Duck, Physical Properties of Tissue (Academic Press, San Diego, CA, 1990).
  7. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998).
    [CrossRef]
  8. M. C. Pilatou, N. J. Voogd, F. F. M. de Mul, and W. Steenbergen, "Analysis of three-dimensional photoacoustic imaging of a vasculature tree in vitro," Rev. Sci. Instrum. 74, 4495-4499 (2003).
    [CrossRef]
  9. R. G. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron 9, 343-346 (2003).
    [CrossRef]
  10. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
    [CrossRef] [PubMed]
  11. M. Xu, and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  12. A. A. Oraevsky, and A. A. Karabutov, "Optoacoustic Tomography," in Biomedical Photonics Handbook, T. Vo-Dinh ed. (CRC Press, Boca Raton, FL, 2003).
  13. M. Xu, and L. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic and photoacoustic reconstruction," Phys. Rev. E 67, 1-15 (2003).
    [CrossRef]
  14. K. Maslov, G. Stoica, and L. V. Wang, "In vivo dark-field reflection-mode photoacoustic microscopy," Opt. Lett. 30, 625-627 (2005).
    [CrossRef] [PubMed]
  15. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnol. 24, 848-851 (2006).
    [CrossRef]
  16. National Institutes of Health, "Guide for the Care and Use of Laboratory Animals," (U.S. Government Printing Office, Washington DC, 1985), NIH Pub. 86-23.
  17. M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Improved in-vivo photoacoustic microscopy based on a virtual detector concept," Opt. Lett. 31, 474-476 (2006).
    [CrossRef] [PubMed]
  18. D. Jensen, The principles of physiology (Appleton-Century-Crofts, New York 1976), pp 746.
  19. K. Maslov, M. Sivaramakrishnan, H. F. Zhang, G. Stoica, and L. V. Wang, "Technical considerations in quantitative blood oxygenation measurement using photoacoustic microscopy in small animal in vivo," in Photons Plus Ultrasound: Imaging and Sensing 2006, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE 6086, 215-225 (2006).
  20. A. F. Frangi, W. J. Niessen, K. L. Vincken, M. A. Viergever, "Multiscale vessel enhancement filtering," in Proceedings of Medical Image Computing & Computer Assisted Intervention (MICCAI), W. Wells, A. Colchester, and S. Delp, eds., Vol. 1496 of Lecture Notes in Computer Science, (Springer-Verlag, Berlin 1998), pp.130-137.
  21. American national standard for the safe use of lasers Z136.1, (American National Standards Institute, New York, 2000).
  22. P. Carmeliet and R. K. Jain, "Angiogenesis in cancer and other disease," Nature 407, 249-257 (2000).
    [CrossRef] [PubMed]
  23. C. M. van Vemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen, "Level-set-based artery-vein separation in blood pool agent CE-MR angiograms," IEEE Trans. Med. Imaging. 22, 1224-1234 (2003).
    [CrossRef]

2006

M. Xu, and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnol. 24, 848-851 (2006).
[CrossRef]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Improved in-vivo photoacoustic microscopy based on a virtual detector concept," Opt. Lett. 31, 474-476 (2006).
[CrossRef] [PubMed]

2005

2003

C. M. van Vemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen, "Level-set-based artery-vein separation in blood pool agent CE-MR angiograms," IEEE Trans. Med. Imaging. 22, 1224-1234 (2003).
[CrossRef]

M. Xu, and L. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic and photoacoustic reconstruction," Phys. Rev. E 67, 1-15 (2003).
[CrossRef]

M. C. Pilatou, N. J. Voogd, F. F. M. de Mul, and W. Steenbergen, "Analysis of three-dimensional photoacoustic imaging of a vasculature tree in vitro," Rev. Sci. Instrum. 74, 4495-4499 (2003).
[CrossRef]

R. G. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron 9, 343-346 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

2000

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).

P. Carmeliet and R. K. Jain, "Angiogenesis in cancer and other disease," Nature 407, 249-257 (2000).
[CrossRef] [PubMed]

1998

H. Nakajima, T. Minabe, and N. Imanishi, "Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging," Plast. Reconstr. Surg. 102, 748-760 (1998).
[CrossRef] [PubMed]

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998).
[CrossRef]

1992

R. L. Barnhill, K. Fandrey, M. A. Levy, M. C. Mihm, and B. Hyman, "Angiogenesis and tumor progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma," Lab. Invest. 67, 331-337 (1992).
[PubMed]

1990

R. R. Edelman, H. P. Mattle, D. J. Atkinson, and H. M. Hoogewoud, "MR angiography," Am. J. Roentgenol. 154, 937-946 (1990).

Atkinson, D. J.

R. R. Edelman, H. P. Mattle, D. J. Atkinson, and H. M. Hoogewoud, "MR angiography," Am. J. Roentgenol. 154, 937-946 (1990).

Barnhill, R. L.

R. L. Barnhill, K. Fandrey, M. A. Levy, M. C. Mihm, and B. Hyman, "Angiogenesis and tumor progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma," Lab. Invest. 67, 331-337 (1992).
[PubMed]

Carmeliet, P.

P. Carmeliet and R. K. Jain, "Angiogenesis in cancer and other disease," Nature 407, 249-257 (2000).
[CrossRef] [PubMed]

Chen, Z.

de Boer, J. F.

de Mul, F. F. M.

M. C. Pilatou, N. J. Voogd, F. F. M. de Mul, and W. Steenbergen, "Analysis of three-dimensional photoacoustic imaging of a vasculature tree in vitro," Rev. Sci. Instrum. 74, 4495-4499 (2003).
[CrossRef]

R. G. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron 9, 343-346 (2003).
[CrossRef]

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998).
[CrossRef]

Dekker, A.

Edelman, R. R.

R. R. Edelman, H. P. Mattle, D. J. Atkinson, and H. M. Hoogewoud, "MR angiography," Am. J. Roentgenol. 154, 937-946 (1990).

Fandrey, K.

R. L. Barnhill, K. Fandrey, M. A. Levy, M. C. Mihm, and B. Hyman, "Angiogenesis and tumor progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma," Lab. Invest. 67, 331-337 (1992).
[PubMed]

Hoelen, C. G. A.

Hondebrink, E.

R. G. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron 9, 343-346 (2003).
[CrossRef]

Hoogewoud, H. M.

R. R. Edelman, H. P. Mattle, D. J. Atkinson, and H. M. Hoogewoud, "MR angiography," Am. J. Roentgenol. 154, 937-946 (1990).

Hyman, B.

R. L. Barnhill, K. Fandrey, M. A. Levy, M. C. Mihm, and B. Hyman, "Angiogenesis and tumor progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma," Lab. Invest. 67, 331-337 (1992).
[PubMed]

Imanishi, N.

H. Nakajima, T. Minabe, and N. Imanishi, "Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging," Plast. Reconstr. Surg. 102, 748-760 (1998).
[CrossRef] [PubMed]

Jain, R. K.

P. Carmeliet and R. K. Jain, "Angiogenesis in cancer and other disease," Nature 407, 249-257 (2000).
[CrossRef] [PubMed]

Kolkman, R. G.

R. G. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron 9, 343-346 (2003).
[CrossRef]

Ku, G.

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).

Levy, M. A.

R. L. Barnhill, K. Fandrey, M. A. Levy, M. C. Mihm, and B. Hyman, "Angiogenesis and tumor progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma," Lab. Invest. 67, 331-337 (1992).
[PubMed]

Li, M.-L.

Maslov, K.

Mattle, H. P.

R. R. Edelman, H. P. Mattle, D. J. Atkinson, and H. M. Hoogewoud, "MR angiography," Am. J. Roentgenol. 154, 937-946 (1990).

Mihm, M. C.

R. L. Barnhill, K. Fandrey, M. A. Levy, M. C. Mihm, and B. Hyman, "Angiogenesis and tumor progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma," Lab. Invest. 67, 331-337 (1992).
[PubMed]

Minabe, T.

H. Nakajima, T. Minabe, and N. Imanishi, "Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging," Plast. Reconstr. Surg. 102, 748-760 (1998).
[CrossRef] [PubMed]

Nakajima, H.

H. Nakajima, T. Minabe, and N. Imanishi, "Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging," Plast. Reconstr. Surg. 102, 748-760 (1998).
[CrossRef] [PubMed]

Nelson, J. S.

Niessen, W. J.

C. M. van Vemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen, "Level-set-based artery-vein separation in blood pool agent CE-MR angiograms," IEEE Trans. Med. Imaging. 22, 1224-1234 (2003).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).

Pilatou, M. C.

M. C. Pilatou, N. J. Voogd, F. F. M. de Mul, and W. Steenbergen, "Analysis of three-dimensional photoacoustic imaging of a vasculature tree in vitro," Rev. Sci. Instrum. 74, 4495-4499 (2003).
[CrossRef]

Pongers, R.

Saxer, C.

Spreeuwers, L. J.

C. M. van Vemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen, "Level-set-based artery-vein separation in blood pool agent CE-MR angiograms," IEEE Trans. Med. Imaging. 22, 1224-1234 (2003).
[CrossRef]

Steenbergen, W.

M. C. Pilatou, N. J. Voogd, F. F. M. de Mul, and W. Steenbergen, "Analysis of three-dimensional photoacoustic imaging of a vasculature tree in vitro," Rev. Sci. Instrum. 74, 4495-4499 (2003).
[CrossRef]

R. G. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron 9, 343-346 (2003).
[CrossRef]

Stoica, G.

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Improved in-vivo photoacoustic microscopy based on a virtual detector concept," Opt. Lett. 31, 474-476 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnol. 24, 848-851 (2006).
[CrossRef]

K. Maslov, G. Stoica, and L. V. Wang, "In vivo dark-field reflection-mode photoacoustic microscopy," Opt. Lett. 30, 625-627 (2005).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).

van Vemmel, C. M.

C. M. van Vemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen, "Level-set-based artery-vein separation in blood pool agent CE-MR angiograms," IEEE Trans. Med. Imaging. 22, 1224-1234 (2003).
[CrossRef]

Viergever, M. A.

C. M. van Vemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen, "Level-set-based artery-vein separation in blood pool agent CE-MR angiograms," IEEE Trans. Med. Imaging. 22, 1224-1234 (2003).
[CrossRef]

Voogd, N. J.

M. C. Pilatou, N. J. Voogd, F. F. M. de Mul, and W. Steenbergen, "Analysis of three-dimensional photoacoustic imaging of a vasculature tree in vitro," Rev. Sci. Instrum. 74, 4495-4499 (2003).
[CrossRef]

Wang, L. V.

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Improved in-vivo photoacoustic microscopy based on a virtual detector concept," Opt. Lett. 31, 474-476 (2006).
[CrossRef] [PubMed]

M. Xu, and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnol. 24, 848-851 (2006).
[CrossRef]

K. Maslov, G. Stoica, and L. V. Wang, "In vivo dark-field reflection-mode photoacoustic microscopy," Opt. Lett. 30, 625-627 (2005).
[CrossRef] [PubMed]

M. Xu, and L. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic and photoacoustic reconstruction," Phys. Rev. E 67, 1-15 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).

Wang, X.

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).

Xiang, S.

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).

Xu, M.

M. Xu, and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

M. Xu, and L. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic and photoacoustic reconstruction," Phys. Rev. E 67, 1-15 (2003).
[CrossRef]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnol. 24, 848-851 (2006).
[CrossRef]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Improved in-vivo photoacoustic microscopy based on a virtual detector concept," Opt. Lett. 31, 474-476 (2006).
[CrossRef] [PubMed]

Zhao, Y.

Am. J. Roentgenol.

R. R. Edelman, H. P. Mattle, D. J. Atkinson, and H. M. Hoogewoud, "MR angiography," Am. J. Roentgenol. 154, 937-946 (1990).

IEEE J. Sel. Top. Quantum Electron

R. G. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron 9, 343-346 (2003).
[CrossRef]

IEEE Trans. Med. Imaging.

C. M. van Vemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen, "Level-set-based artery-vein separation in blood pool agent CE-MR angiograms," IEEE Trans. Med. Imaging. 22, 1224-1234 (2003).
[CrossRef]

Lab. Invest.

R. L. Barnhill, K. Fandrey, M. A. Levy, M. C. Mihm, and B. Hyman, "Angiogenesis and tumor progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma," Lab. Invest. 67, 331-337 (1992).
[PubMed]

Nat. Biotechnol.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 25, 114-116 (2000).

Nature

P. Carmeliet and R. K. Jain, "Angiogenesis in cancer and other disease," Nature 407, 249-257 (2000).
[CrossRef] [PubMed]

Nature Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnol. 24, 848-851 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. E

M. Xu, and L. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic and photoacoustic reconstruction," Phys. Rev. E 67, 1-15 (2003).
[CrossRef]

Plast. Reconstr. Surg.

H. Nakajima, T. Minabe, and N. Imanishi, "Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging," Plast. Reconstr. Surg. 102, 748-760 (1998).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

M. Xu, and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

M. C. Pilatou, N. J. Voogd, F. F. M. de Mul, and W. Steenbergen, "Analysis of three-dimensional photoacoustic imaging of a vasculature tree in vitro," Rev. Sci. Instrum. 74, 4495-4499 (2003).
[CrossRef]

Other

D. Jensen, The principles of physiology (Appleton-Century-Crofts, New York 1976), pp 746.

K. Maslov, M. Sivaramakrishnan, H. F. Zhang, G. Stoica, and L. V. Wang, "Technical considerations in quantitative blood oxygenation measurement using photoacoustic microscopy in small animal in vivo," in Photons Plus Ultrasound: Imaging and Sensing 2006, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE 6086, 215-225 (2006).

A. F. Frangi, W. J. Niessen, K. L. Vincken, M. A. Viergever, "Multiscale vessel enhancement filtering," in Proceedings of Medical Image Computing & Computer Assisted Intervention (MICCAI), W. Wells, A. Colchester, and S. Delp, eds., Vol. 1496 of Lecture Notes in Computer Science, (Springer-Verlag, Berlin 1998), pp.130-137.

American national standard for the safe use of lasers Z136.1, (American National Standards Institute, New York, 2000).

A. A. Oraevsky, and A. A. Karabutov, "Optoacoustic Tomography," in Biomedical Photonics Handbook, T. Vo-Dinh ed. (CRC Press, Boca Raton, FL, 2003).

F. A. Duck, Physical Properties of Tissue (Academic Press, San Diego, CA, 1990).

National Institutes of Health, "Guide for the Care and Use of Laboratory Animals," (U.S. Government Printing Office, Washington DC, 1985), NIH Pub. 86-23.

Supplementary Material (2)

» Media 1: AVI (1684 KB)     
» Media 2: AVI (2242 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the PAM system.

Fig 2.
Fig 2.

Structural imaging of the subcutaneous microvasculature in rats in vivo. (A) An MAP image. (B) (1.6 MB) A movie of the volume-rendered microvasculature viewed from different angles.

Fig. 3.
Fig. 3.

(2.2 MB) A movie showing in vivo functional images representing SO2 in single blood vessels of rats. Venules and arterioles are colored blue and red, respectively. The imaged average SO2 values in the arterioles and venoules were 0.99±0.01 and 0.81±0.02, respectively.

Fig. 4.
Fig. 4.

Volumetric imaging of the subcutaneous blood vessels in the palm of a human hand in vivo.

Metrics