Abstract

We demonstrate a wide and fast wavelength-tunable mode-locked fiber laser based on tuning the mode-locking frequency. The laser is in a sigma-laser configuration, and a wideband semiconductor optical amplifier (SOA) at 1.3 µm wavelength region is used as a gain medium. Mode locking is achieved by direct modulation of the injection current to the SOA, and a dispersion compensation fiber (DCF) is used to provide desired intracavity dispersion. By tuning the modulation frequency, a wide tuning range over 100 nm is achieved. Lasing wavelength is measured to be linearly in proportion to the RF frequency applied to the SOA. The sweep rate over the entire wavelength range (100 nm) can be raised to be as high as 200 kHz.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Amann and J. Buus, Tunable Laser Diodes, (Artech House, 1998).
  2. S. Yamashita and M. Nishihara, "Widely tunable erbium-doped fiber ring laser covering both C-band and L-band," IEEE J. Sel. Top. Quantum Electron. 7, 41-43 (2001).
    [CrossRef]
  3. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
    [CrossRef]
  4. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging : design and scaling principles," Opt. Express 13, 3513-3528, (2005).
    [CrossRef] [PubMed]
  6. P. C. Peng, J. H. Lin, H. Y. Tseng, and S. Chi, "Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser," IEEE Photon. Technol. Lett. 16, 230-232, (2004).
    [CrossRef]
  7. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed bragg reflector laser," Appl. Opt. 44, 808-816 (2005).
    [CrossRef] [PubMed]
  8. S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
    [CrossRef]
  9. S. Yamashita, and K. Hotate, M. Ito, "Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror," J. Lightwave Technol. 14, 385-390 (1996).
    [CrossRef]
  10. K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast semiconductor-based fiber laser sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
    [CrossRef]

2005

2004

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast semiconductor-based fiber laser sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

P. C. Peng, J. H. Lin, H. Y. Tseng, and S. Chi, "Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser," IEEE Photon. Technol. Lett. 16, 230-232, (2004).
[CrossRef]

2003

2001

S. Yamashita and M. Nishihara, "Widely tunable erbium-doped fiber ring laser covering both C-band and L-band," IEEE J. Sel. Top. Quantum Electron. 7, 41-43 (2001).
[CrossRef]

1998

S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
[CrossRef]

1996

S. Yamashita, and K. Hotate, M. Ito, "Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror," J. Lightwave Technol. 14, 385-390 (1996).
[CrossRef]

Amano, T.

Avramopoulos, H.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast semiconductor-based fiber laser sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

Bintjas, C.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast semiconductor-based fiber laser sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

Bouma, B. E.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

Chan, K. T.

S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
[CrossRef]

Chi, S.

P. C. Peng, J. H. Lin, H. Y. Tseng, and S. Chi, "Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser," IEEE Photon. Technol. Lett. 16, 230-232, (2004).
[CrossRef]

Choi, D.

de Boer, J. F.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Fujimoto, J. G.

Furukawa, H.

Hiro-Oka, H.

Hotate, K.

S. Yamashita, and K. Hotate, M. Ito, "Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror," J. Lightwave Technol. 14, 385-390 (1996).
[CrossRef]

Hsu, K.

Huber, R.

Ito, M.

S. Yamashita, and K. Hotate, M. Ito, "Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror," J. Lightwave Technol. 14, 385-390 (1996).
[CrossRef]

Kano, F.

Li, S.

S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
[CrossRef]

Lin, J. H.

P. C. Peng, J. H. Lin, H. Y. Tseng, and S. Chi, "Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser," IEEE Photon. Technol. Lett. 16, 230-232, (2004).
[CrossRef]

Nakanishi, M.

Nishihara, M.

S. Yamashita and M. Nishihara, "Widely tunable erbium-doped fiber ring laser covering both C-band and L-band," IEEE J. Sel. Top. Quantum Electron. 7, 41-43 (2001).
[CrossRef]

Ohbayashi, K.

Peng, P. C.

P. C. Peng, J. H. Lin, H. Y. Tseng, and S. Chi, "Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser," IEEE Photon. Technol. Lett. 16, 230-232, (2004).
[CrossRef]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Pleros, N.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast semiconductor-based fiber laser sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

Shimizu, K.

Taira, K.

Takeda, M.

Tearney, G. J.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

Tseng, H. Y.

P. C. Peng, J. H. Lin, H. Y. Tseng, and S. Chi, "Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser," IEEE Photon. Technol. Lett. 16, 230-232, (2004).
[CrossRef]

Vlachos, K.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast semiconductor-based fiber laser sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

Wojtkowski, M.

Yamashita, S.

S. Yamashita and M. Nishihara, "Widely tunable erbium-doped fiber ring laser covering both C-band and L-band," IEEE J. Sel. Top. Quantum Electron. 7, 41-43 (2001).
[CrossRef]

S. Yamashita, and K. Hotate, M. Ito, "Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror," J. Lightwave Technol. 14, 385-390 (1996).
[CrossRef]

Yun, S. H.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Yamashita and M. Nishihara, "Widely tunable erbium-doped fiber ring laser covering both C-band and L-band," IEEE J. Sel. Top. Quantum Electron. 7, 41-43 (2001).
[CrossRef]

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, "Ultrafast semiconductor-based fiber laser sources," IEEE J. Sel. Top. Quantum Electron. 10, 147-154 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

P. C. Peng, J. H. Lin, H. Y. Tseng, and S. Chi, "Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser," IEEE Photon. Technol. Lett. 16, 230-232, (2004).
[CrossRef]

J. Lightwave Technol.

S. Yamashita, and K. Hotate, M. Ito, "Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror," J. Lightwave Technol. 14, 385-390 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M.-C. Amann and J. Buus, Tunable Laser Diodes, (Artech House, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Optical spectra of the proposed laser (DCF 20 m).

Fig. 3.
Fig. 3.

Output power as a function of lasing wavelength (DCF 20 m).

Fig. 4.
Fig. 4.

Relation between mode-locking frequency and lasing wavelength (DCF 35 m).

Fig. 5.
Fig. 5.

Characteristic of rational mode-locking (a)Optical spectra, (b)Pulse waveform.

Fig. 6.
Fig. 6.

Static optical spectra.

Fig. 7.
Fig. 7.

RF modulation signal waveform.

Fig. 8.
Fig. 8.

Characteristics of the swept laser (DCF 20 m) (a)1 kHz, (b)50 kHz, (c)100 kHz, (d)200 kHz.

Fig. 9.
Fig. 9.

Characteristics of the swept laser (DCF 35 m) (a)1 kHz, (b)20 kHz, (c)50 kHz, (d)100 kHz.

Fig. 10.
Fig. 10.

Experimental setup for measuring a tuning linearity.

Fig. 11.
Fig. 11.

Result of measuring a tuning linearity (a)Temporal waveform of the laser after FFPI, (b)Measured linearity.

Tables (1)

Tables Icon

Table.1. Tuning characteristics.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = c nL ,
λ = n 0 cDF 0 ( F F 0 ) + λ 0 = n 0 2 L c 2 D ( F F 0 ) + λ 0 ,
λ m = n 0 2 L c 2 ND ( f m f m 0 ) + λ 0 = n 0 cDf m 0 ( f m f m 0 ) + λ 0 ,
Δ λ m = n 0 F 0 cDf m 0 = n 0 cDN .
F = ( N + 1 m ) F 1 ,

Metrics