Abstract

A suppressant effect for mode competition of multi-wavelength lasing oscillations induced by deeply saturated effect in an ordinary erbium-doped fiber ring laser (EDFRL) was observed and experimentally investigated. Results show that the effect is helpful to obtain stable multi-wavelength lasing at room temperature in the EDFRL, which offers a new and simple approach to achieve stable multi-wavelength EDF lasing. Stable two- and three- wavelength lasing oscillations were achieved based on the effect in the ordinary EDFRL for the first time to our best knowledge. The multi-wavelength lasing oscillations were so stable integrated over smaller than 1 ms that the maximum power fluctuation over more than 30 minutes of observation was less than 0.1 dB and 0.5 dB for two-wavelength lasing with a spacing of 1.28 nm and 0.76 nm, respectively.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Park and P. F. Wysocki, "24-Line Multiwavelength operation of erbium-doped fiber-ring laser," IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
    [CrossRef]
  2. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, "Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid," J. Lightwave Technol. 18, 825-831 (2000).
    [CrossRef]
  3. Y. Liu, X. Feng, S. Yuan, G. Kai and X. Dong, "Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings," Opt. Express 12, 2056-2061 (2004).
    [CrossRef] [PubMed]
  4. X. Feng Y. Liu, S. Yuan, G. Kai, W. Zhang and X. Dong, "L-band switchable dual-wavelength erbium-doped fiber laser based on a multimode fiber Bragg grating," Opt. Express 12, 3834-3839 (2004).
    [CrossRef] [PubMed]
  5. D. S. Moon, U. Paek and Y. Chung, "Polarization controlled multi-wavelength erbium-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core," Opt. Express 13, 5574-5579 (2005).
    [CrossRef] [PubMed]
  6. X. Liu and C. Lu, "Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 17, 2541-2543 (2005).
    [CrossRef]
  7. Y. -G. Han, T. V. A. Tran, and S. B. Lee, "Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shift fiber," Opt. Lett. 31, 697-699 (2006).
    [CrossRef] [PubMed]
  8. S. Pan, C. Lou and Y. Gao, "Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter," Opt. Express 14, 1113-1118 (2006).
    [CrossRef] [PubMed]
  9. E. Desurvire, J. L. Zyskind and J. R. Simpson, "Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
    [CrossRef]
  10. J. L. Zyskind, E. Desurvire, J. W. Sulhoff and D. J. Digiovanni, "Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core," IEEE Photon. Technol. Lett. 2, 869-871 (1990).
    [CrossRef]
  11. J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, "Spectral-hole burning in erbium-doped silica and fluoride fibers," IEEE Photon. Technol. Lett. 9, 1578-1579 (1997).
    [CrossRef]
  12. M. Tachibana, R. L. Laming, P. K. Morkel and D. N. Payne, "Gain cross saturation and spectral hole burning in wideband erbium-doped fiber amplifiers," Opt. Lett. 16, 1499-1501 (1991).
    [CrossRef] [PubMed]

2006

2005

D. S. Moon, U. Paek and Y. Chung, "Polarization controlled multi-wavelength erbium-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core," Opt. Express 13, 5574-5579 (2005).
[CrossRef] [PubMed]

X. Liu and C. Lu, "Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 17, 2541-2543 (2005).
[CrossRef]

2004

2000

1997

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, "Spectral-hole burning in erbium-doped silica and fluoride fibers," IEEE Photon. Technol. Lett. 9, 1578-1579 (1997).
[CrossRef]

1996

N. Park and P. F. Wysocki, "24-Line Multiwavelength operation of erbium-doped fiber-ring laser," IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
[CrossRef]

1991

1990

E. Desurvire, J. L. Zyskind and J. R. Simpson, "Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

J. L. Zyskind, E. Desurvire, J. W. Sulhoff and D. J. Digiovanni, "Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core," IEEE Photon. Technol. Lett. 2, 869-871 (1990).
[CrossRef]

Bellemare, A.

Chung, Y.

Desurvire, E.

E. Desurvire, J. L. Zyskind and J. R. Simpson, "Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

J. L. Zyskind, E. Desurvire, J. W. Sulhoff and D. J. Digiovanni, "Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core," IEEE Photon. Technol. Lett. 2, 869-871 (1990).
[CrossRef]

Digiovanni, D. J.

J. L. Zyskind, E. Desurvire, J. W. Sulhoff and D. J. Digiovanni, "Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core," IEEE Photon. Technol. Lett. 2, 869-871 (1990).
[CrossRef]

Dong, X.

Feng, X.

Gao, Y.

Han, Y. -G.

Kai, G.

Karasek, M.

Laming, R. L.

LaRochelle, S.

Lee, S. B.

Liu, X.

X. Liu and C. Lu, "Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 17, 2541-2543 (2005).
[CrossRef]

Liu, Y.

Lou, C.

Lu, C.

X. Liu and C. Lu, "Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 17, 2541-2543 (2005).
[CrossRef]

Moon, D. S.

Morkel, P. K.

Paek, U.

Pan, S.

Park, N.

N. Park and P. F. Wysocki, "24-Line Multiwavelength operation of erbium-doped fiber-ring laser," IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
[CrossRef]

Payne, D. N.

Rochette, M.

Simpson, J. R.

E. Desurvire, J. L. Zyskind and J. R. Simpson, "Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

Srivastava, A. K.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, "Spectral-hole burning in erbium-doped silica and fluoride fibers," IEEE Photon. Technol. Lett. 9, 1578-1579 (1997).
[CrossRef]

Sulhoff, J. W.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, "Spectral-hole burning in erbium-doped silica and fluoride fibers," IEEE Photon. Technol. Lett. 9, 1578-1579 (1997).
[CrossRef]

J. L. Zyskind, E. Desurvire, J. W. Sulhoff and D. J. Digiovanni, "Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core," IEEE Photon. Technol. Lett. 2, 869-871 (1990).
[CrossRef]

Sun, Y.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, "Spectral-hole burning in erbium-doped silica and fluoride fibers," IEEE Photon. Technol. Lett. 9, 1578-1579 (1997).
[CrossRef]

Tachibana, M.

Tetu, M.

Tran, T. V. A.

Wolf, C.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, "Spectral-hole burning in erbium-doped silica and fluoride fibers," IEEE Photon. Technol. Lett. 9, 1578-1579 (1997).
[CrossRef]

Wysocki, P. F.

N. Park and P. F. Wysocki, "24-Line Multiwavelength operation of erbium-doped fiber-ring laser," IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
[CrossRef]

Yuan, S.

Zyskind, J. L.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, "Spectral-hole burning in erbium-doped silica and fluoride fibers," IEEE Photon. Technol. Lett. 9, 1578-1579 (1997).
[CrossRef]

J. L. Zyskind, E. Desurvire, J. W. Sulhoff and D. J. Digiovanni, "Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core," IEEE Photon. Technol. Lett. 2, 869-871 (1990).
[CrossRef]

E. Desurvire, J. L. Zyskind and J. R. Simpson, "Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Park and P. F. Wysocki, "24-Line Multiwavelength operation of erbium-doped fiber-ring laser," IEEE Photon. Technol. Lett. 8, 1459-1461 (1996).
[CrossRef]

E. Desurvire, J. L. Zyskind and J. R. Simpson, "Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

J. L. Zyskind, E. Desurvire, J. W. Sulhoff and D. J. Digiovanni, "Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core," IEEE Photon. Technol. Lett. 2, 869-871 (1990).
[CrossRef]

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, "Spectral-hole burning in erbium-doped silica and fluoride fibers," IEEE Photon. Technol. Lett. 9, 1578-1579 (1997).
[CrossRef]

X. Liu and C. Lu, "Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 17, 2541-2543 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup

Fig. 2.
Fig. 2.

Transmission spectrum of the SFBG.

Fig. 3.
Fig. 3.

Output spectra of the multiwavelength EDFRL with (a) dual-wavelength lasing and (b) three-wavelength lasing achieved by adjusting the VOA.

Fig. 4.
Fig. 4.

Power fluctuation of the multiwavelength EDFRL during scanning: (a) for dual-wavelength lasing, the power fluctuations are less than ~0.1 dB; (b) for three-wavelength lasing, the power fluctuations are less than ~0.8 dB.

Fig. 5.
Fig. 5.

Power fluctuation of the multiwavelength EDFRL during scanning without the ISO. The maximum fluctuations are 1.25 dB at 1550.96 nm and 1.52 dB at 1552.24nm, respectively.

Fig. 6.
Fig. 6.

Output spectra of the dual-wavelength EDFRL obtained using the two common FBGs. with 0.76 nm wavelength spacing.

Fig. 7.
Fig. 7.

Power fluctuations of the dual-wavelength EDFRL using the two FBGs with different pump power. The maximum fluctuations for 20 mW, 35mW, 70 mW and 98 mW pump powers are (1.15, 1.56) dB, (1.10, 1.18) dB, (0.41, 0.66) dB and (0.49, 0.44) dB at wavelengths of 1550.38 nm and 1551.14 nm, respectively.

Metrics