Abstract

We demonstrate 0.85 W of power in a single longitudinal mode at 1066 nm from a Nd:GdVO4 laser. The laser consists of only two components, the gain medium and a volume Bragg grating in glass, in a simple linear cavity comprising a combination of a Fabry-Perot cavity and a narrowband filter. Thanks to the narrowband Bragg grating, the single longitudinal mode is maintained for a cavity length up to 8 mm, while a continuous tuning of 25 GHz is achieved for a shorter cavity and lower power.

© 2006 Optical Society of America

Full Article  |  PDF Article

Corrections

Björn Jacobsson, Valdas Pasiskevicius, and Fredrik Laurell, "Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity: erratum," Opt. Express 15, 9387-9387 (2007)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-15-15-9387

References

  • View by:
  • |
  • |
  • |

  1. H. G. Danielmeyer, "Stabilized efficient single-frequency Nd:YAG laser," IEEE J. Quantum Electron. 6, 101-104 (1970).
    [CrossRef]
  2. H. G. Danielmeyer and E. H. Turner, "Electro-optic elimination of spatial hole burning in lasers," Appl. Phys. Lett. 17, 519-521 (1970).
    [CrossRef]
  3. K. Nakagawa, Y. Shimizu, and M. Ohtsu, "High power diode-laser-pumped twisted-mode Nd:YAG laser," IEEE Photon. Technol. Lett. 6, 499-501 (1994).
    [CrossRef]
  4. K. Wallmeroth and P. Peuser, "High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser," Electron. Lett. 24, 1086-1088 (1988).
    [CrossRef]
  5. Y. J. Cheng, C. G. Fanning, and A. E. Siegman, "Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator having nonorthogonal modes," Phys. Rev. Lett. 77, 627-630 (1996).
    [CrossRef] [PubMed]
  6. T. J. Kane and R. L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser," Opt. Lett. 10, 65-67 (1985).
    [CrossRef] [PubMed]
  7. H. A. Haus and S. Kawakami, "On the ‘excess spontaneous emission factor’ in gain-guided laser amplifiers," IEEE J. Quantum Electron. 21, 63-69 (1985).
    [CrossRef]
  8. A. E. Siegman, "Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators," Phys. Rev. A 39, 1264-1268 (1989).
    [CrossRef] [PubMed]
  9. J. J. Zayhowski, "Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities," Opt. Lett. 15, 431-433 (1990).
    [CrossRef] [PubMed]
  10. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999).
    [CrossRef]
  11. B. Volodin, S. Dolgy, E. Melnik, E. Downs, J. Shaw, and V. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004).
    [CrossRef] [PubMed]
  12. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator," Opt. Lett. 30, 2281-2283 (2005).
    [CrossRef] [PubMed]
  13. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating," Opt. Lett. 31, 1663-1665 (2006).
    [CrossRef] [PubMed]
  14. T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett. 31, 229-231 (2006).
    [CrossRef] [PubMed]
  15. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech J. 48, 2909-2947 (1969).
  16. Y. Barmenkov, D. Zalvidea, S. Torres-Peir´o, J. L. Cruz, and M. And´es, "Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings," Opt. Express 14, 6394-6399 (2006).
    [CrossRef] [PubMed]

2006 (3)

2005 (1)

2004 (1)

1999 (1)

1996 (1)

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, "Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator having nonorthogonal modes," Phys. Rev. Lett. 77, 627-630 (1996).
[CrossRef] [PubMed]

1994 (1)

K. Nakagawa, Y. Shimizu, and M. Ohtsu, "High power diode-laser-pumped twisted-mode Nd:YAG laser," IEEE Photon. Technol. Lett. 6, 499-501 (1994).
[CrossRef]

1990 (1)

1989 (1)

A. E. Siegman, "Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators," Phys. Rev. A 39, 1264-1268 (1989).
[CrossRef] [PubMed]

1988 (1)

K. Wallmeroth and P. Peuser, "High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser," Electron. Lett. 24, 1086-1088 (1988).
[CrossRef]

1985 (2)

T. J. Kane and R. L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser," Opt. Lett. 10, 65-67 (1985).
[CrossRef] [PubMed]

H. A. Haus and S. Kawakami, "On the ‘excess spontaneous emission factor’ in gain-guided laser amplifiers," IEEE J. Quantum Electron. 21, 63-69 (1985).
[CrossRef]

1970 (2)

H. G. Danielmeyer, "Stabilized efficient single-frequency Nd:YAG laser," IEEE J. Quantum Electron. 6, 101-104 (1970).
[CrossRef]

H. G. Danielmeyer and E. H. Turner, "Electro-optic elimination of spatial hole burning in lasers," Appl. Phys. Lett. 17, 519-521 (1970).
[CrossRef]

1969 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech J. 48, 2909-2947 (1969).

And´es, M.

Ban, V.

Barmenkov, Y.

Bass, M.

Byer, R. L.

Cheng, Y. J.

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, "Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator having nonorthogonal modes," Phys. Rev. Lett. 77, 627-630 (1996).
[CrossRef] [PubMed]

Chung, T.

Cruz, J. L.

Danielmeyer, H. G.

H. G. Danielmeyer, "Stabilized efficient single-frequency Nd:YAG laser," IEEE J. Quantum Electron. 6, 101-104 (1970).
[CrossRef]

H. G. Danielmeyer and E. H. Turner, "Electro-optic elimination of spatial hole burning in lasers," Appl. Phys. Lett. 17, 519-521 (1970).
[CrossRef]

Dolgy, S.

Downs, E.

Efimov, O.

Fanning, C. G.

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, "Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator having nonorthogonal modes," Phys. Rev. Lett. 77, 627-630 (1996).
[CrossRef] [PubMed]

Glebov, L.

Glebov, L. B.

Glebova, L.

Haus, H. A.

H. A. Haus and S. Kawakami, "On the ‘excess spontaneous emission factor’ in gain-guided laser amplifiers," IEEE J. Quantum Electron. 21, 63-69 (1985).
[CrossRef]

Jacobsson, B.

Kane, T. J.

Kawakami, S.

H. A. Haus and S. Kawakami, "On the ‘excess spontaneous emission factor’ in gain-guided laser amplifiers," IEEE J. Quantum Electron. 21, 63-69 (1985).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech J. 48, 2909-2947 (1969).

Laurell, F.

Melnik, E.

Nakagawa, K.

K. Nakagawa, Y. Shimizu, and M. Ohtsu, "High power diode-laser-pumped twisted-mode Nd:YAG laser," IEEE Photon. Technol. Lett. 6, 499-501 (1994).
[CrossRef]

Ohtsu, M.

K. Nakagawa, Y. Shimizu, and M. Ohtsu, "High power diode-laser-pumped twisted-mode Nd:YAG laser," IEEE Photon. Technol. Lett. 6, 499-501 (1994).
[CrossRef]

Pasiskevicius, V.

Peuser, P.

K. Wallmeroth and P. Peuser, "High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser," Electron. Lett. 24, 1086-1088 (1988).
[CrossRef]

Rapaport, A.

Richardson, K.

Richardson, M. C.

Shaw, J.

Shimizu, Y.

K. Nakagawa, Y. Shimizu, and M. Ohtsu, "High power diode-laser-pumped twisted-mode Nd:YAG laser," IEEE Photon. Technol. Lett. 6, 499-501 (1994).
[CrossRef]

Siegman, A. E.

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, "Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator having nonorthogonal modes," Phys. Rev. Lett. 77, 627-630 (1996).
[CrossRef] [PubMed]

A. E. Siegman, "Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators," Phys. Rev. A 39, 1264-1268 (1989).
[CrossRef] [PubMed]

Smirnov, V.

Tiihonen, M.

Torres-Peir´o, S.

Turner, E. H.

H. G. Danielmeyer and E. H. Turner, "Electro-optic elimination of spatial hole burning in lasers," Appl. Phys. Lett. 17, 519-521 (1970).
[CrossRef]

Volodin, B.

Wallmeroth, K.

K. Wallmeroth and P. Peuser, "High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser," Electron. Lett. 24, 1086-1088 (1988).
[CrossRef]

Zalvidea, D.

Zayhowski, J. J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. G. Danielmeyer and E. H. Turner, "Electro-optic elimination of spatial hole burning in lasers," Appl. Phys. Lett. 17, 519-521 (1970).
[CrossRef]

Bell Syst. Tech J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech J. 48, 2909-2947 (1969).

Electron. Lett. (1)

K. Wallmeroth and P. Peuser, "High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser," Electron. Lett. 24, 1086-1088 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. G. Danielmeyer, "Stabilized efficient single-frequency Nd:YAG laser," IEEE J. Quantum Electron. 6, 101-104 (1970).
[CrossRef]

H. A. Haus and S. Kawakami, "On the ‘excess spontaneous emission factor’ in gain-guided laser amplifiers," IEEE J. Quantum Electron. 21, 63-69 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Nakagawa, Y. Shimizu, and M. Ohtsu, "High power diode-laser-pumped twisted-mode Nd:YAG laser," IEEE Photon. Technol. Lett. 6, 499-501 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (1)

A. E. Siegman, "Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators," Phys. Rev. A 39, 1264-1268 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, "Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator having nonorthogonal modes," Phys. Rev. Lett. 77, 627-630 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Laser setup consisting of a Nd:GdVO4 crystal and a volume Bragg grating.

Fig. 2.
Fig. 2.

Bragg grating reflectivity (blue), experimental points and solid line fit, as well as phase change (solid red line) with linear approximation (dashed red line).

Fig. 3.
Fig. 3.

Frequency detuning with changing cavity length, theoretical prediction (line), and experimental laser wavelength, dots for single mode and crosses for multimode.

Fig. 4.
Fig. 4.

Wavelength and frequency detuning versus laser power with changed cavity length for four absorbed powers: 0.14 W(blue), 0.69 W(green), 1.5 W (red), 2.1 W(black). Dots is for a single longitudinal mode and crosses for multimode lasing.

Fig. 5.
Fig. 5.

Absorbed pump power versus laser output power.

Fig. 6.
Fig. 6.

Single-mode tuning range versus absorbed pump power for 4.7 mm cavity length (red triangles), and versus cavity length at 0.69 W (blue dots) and 2.1 W (green squares) absorbed power. The theoretical prediction from Eq. 1 is given as dashed lines in corresponding colours.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P a P a th < ( β ψ ) ( 2 β ψ 1 ) ( 1 ψ ) 2
R ( k , θ ) = { κ 2 sinh 2 ( α L cos θ ) κ 2 cosh 2 ( α L cos θ ) ( δ k cos 2 θ ) 2 δ k < κ κ 2 sin 2 ( α L cos θ ) κ 2 cos 2 ( α L cos θ ) + ( δ k cos 2 θ ) 2 δ k > κ ,
φ ( k , θ ) = { arctan ( δ k cos 2 θ α tanh ( α L cos θ ) ) δ k < κ arctan ( δ k cos 2 θ α tan ( α L cos θ ) ) + m π δ k > κ ,

Metrics