Abstract

We report our study of deposited thermal energy in silicon induced by multiple-pulse femtosecond laser irradiation. Using infrared thermography, we quantified through in situ direct measurement of temperature fields that a significant portion of laser power (two-thirds or more) was deposited into the silicon substrate instead of being reflected or carried away with the ablated material. This is believed to be the first reported study of direct in situ measurement of temperature fields as the result of deposited thermal energy from multiple femtosecond laser pulses. Our simulation results support the measured data.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A 61, 33-37 (1995).
    [CrossRef]
  2. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
    [CrossRef]
  3. X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. QE-33, 1706-1716 (1997).
  4. A. Luft, U. Franz, A. Emsermannn, and J. Kaspar, "A study of thermal and mechanical effects on materials induced by pulsed laser drilling," Appl. Phys. A 63, 93-101 (1996).
    [CrossRef]
  5. Y. Hirayama and M. Obara, "Heat effects of metals ablated with femtosecond laser pulses," Appl. Surf. Sci. 197-198, 741-745 (2002).
    [CrossRef]
  6. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
    [CrossRef]
  7. A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, "Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon," Appl. Phys. A 76, 201-207 (2003).
    [CrossRef]
  8. J. Jia, M. Li, and C. V. Thompson, "Amorphization of silicon by femtosecond laser pulses," Appl. Phys. Lett. 84, 3205-3207 (2004).
    [CrossRef]
  9. A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 01196 (2005).
    [CrossRef]
  10. A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multiple femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
    [CrossRef]
  11. A. Yokotani, T. Mukumoto, Y. Kanamitsu, H. Fukumoto, and K. Kurosawa, "Time-resolving image analysis of drilling of thin silicon substrates with femtosecond laser ablation," Jpn. J. Appl. Phys. 44, 7998-8003 (2005).
    [CrossRef]
  12. S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
    [CrossRef]
  13. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
    [CrossRef]
  14. P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
    [CrossRef]
  15. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, "Laser-solid interaction in the femtosecond time regime," Appl. Surf. Sci. 109-110, 1-10 (1997).
    [CrossRef]

2006 (1)

S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
[CrossRef]

2005 (3)

A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 01196 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multiple femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

A. Yokotani, T. Mukumoto, Y. Kanamitsu, H. Fukumoto, and K. Kurosawa, "Time-resolving image analysis of drilling of thin silicon substrates with femtosecond laser ablation," Jpn. J. Appl. Phys. 44, 7998-8003 (2005).
[CrossRef]

2004 (1)

J. Jia, M. Li, and C. V. Thompson, "Amorphization of silicon by femtosecond laser pulses," Appl. Phys. Lett. 84, 3205-3207 (2004).
[CrossRef]

2003 (1)

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, "Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon," Appl. Phys. A 76, 201-207 (2003).
[CrossRef]

2002 (2)

Y. Hirayama and M. Obara, "Heat effects of metals ablated with femtosecond laser pulses," Appl. Surf. Sci. 197-198, 741-745 (2002).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

1999 (1)

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
[CrossRef]

1997 (2)

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, "Laser-solid interaction in the femtosecond time regime," Appl. Surf. Sci. 109-110, 1-10 (1997).
[CrossRef]

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. QE-33, 1706-1716 (1997).

1996 (3)

A. Luft, U. Franz, A. Emsermannn, and J. Kaspar, "A study of thermal and mechanical effects on materials induced by pulsed laser drilling," Appl. Phys. A 63, 93-101 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
[CrossRef]

1995 (1)

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A 61, 33-37 (1995).
[CrossRef]

Audouard, E.

S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

Bialkowski, J.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
[CrossRef]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, "Laser-solid interaction in the femtosecond time regime," Appl. Surf. Sci. 109-110, 1-10 (1997).
[CrossRef]

Borowiec, A.

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, "Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon," Appl. Phys. A 76, 201-207 (2003).
[CrossRef]

Cavalleri, A.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
[CrossRef]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Demchuk, A.

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A 61, 33-37 (1995).
[CrossRef]

Du, D.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. QE-33, 1706-1716 (1997).

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
[CrossRef]

Emsermannn, A.

A. Luft, U. Franz, A. Emsermannn, and J. Kaspar, "A study of thermal and mechanical effects on materials induced by pulsed laser drilling," Appl. Phys. A 63, 93-101 (1996).
[CrossRef]

Fillit, R.

S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
[CrossRef]

Fortnuier, R.

S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
[CrossRef]

Fortunier, R.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

Fraczkiewicz, A.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

Franz, U.

A. Luft, U. Franz, A. Emsermannn, and J. Kaspar, "A study of thermal and mechanical effects on materials induced by pulsed laser drilling," Appl. Phys. A 63, 93-101 (1996).
[CrossRef]

Fukumoto, H.

A. Yokotani, T. Mukumoto, Y. Kanamitsu, H. Fukumoto, and K. Kurosawa, "Time-resolving image analysis of drilling of thin silicon substrates with femtosecond laser ablation," Jpn. J. Appl. Phys. 44, 7998-8003 (2005).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 01196 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multiple femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

Haugen, H. K.

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, "Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon," Appl. Phys. A 76, 201-207 (2003).
[CrossRef]

Hirayama, Y.

Y. Hirayama and M. Obara, "Heat effects of metals ablated with femtosecond laser pulses," Appl. Surf. Sci. 197-198, 741-745 (2002).
[CrossRef]

Huot, N.

S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

Jia, J.

J. Jia, M. Li, and C. V. Thompson, "Amorphization of silicon by femtosecond laser pulses," Appl. Phys. Lett. 84, 3205-3207 (2004).
[CrossRef]

Jonin, C.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

Kanamitsu, Y.

A. Yokotani, T. Mukumoto, Y. Kanamitsu, H. Fukumoto, and K. Kurosawa, "Time-resolving image analysis of drilling of thin silicon substrates with femtosecond laser ablation," Jpn. J. Appl. Phys. 44, 7998-8003 (2005).
[CrossRef]

Kaspar, J.

A. Luft, U. Franz, A. Emsermannn, and J. Kaspar, "A study of thermal and mechanical effects on materials induced by pulsed laser drilling," Appl. Phys. A 63, 93-101 (1996).
[CrossRef]

Kurosawa, K.

A. Yokotani, T. Mukumoto, Y. Kanamitsu, H. Fukumoto, and K. Kurosawa, "Time-resolving image analysis of drilling of thin silicon substrates with femtosecond laser ablation," Jpn. J. Appl. Phys. 44, 7998-8003 (2005).
[CrossRef]

Laporte, P.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

Le Harzic, R.

S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

Li, M.

J. Jia, M. Li, and C. V. Thompson, "Amorphization of silicon by femtosecond laser pulses," Appl. Phys. Lett. 84, 3205-3207 (2004).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. QE-33, 1706-1716 (1997).

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
[CrossRef]

Luft, A.

A. Luft, U. Franz, A. Emsermannn, and J. Kaspar, "A study of thermal and mechanical effects on materials induced by pulsed laser drilling," Appl. Phys. A 63, 93-101 (1996).
[CrossRef]

Mackenzie, M.

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, "Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon," Appl. Phys. A 76, 201-207 (2003).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Mourou, G.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. QE-33, 1706-1716 (1997).

Mukumoto, T.

A. Yokotani, T. Mukumoto, Y. Kanamitsu, H. Fukumoto, and K. Kurosawa, "Time-resolving image analysis of drilling of thin silicon substrates with femtosecond laser ablation," Jpn. J. Appl. Phys. 44, 7998-8003 (2005).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Obara, M.

Y. Hirayama and M. Obara, "Heat effects of metals ablated with femtosecond laser pulses," Appl. Surf. Sci. 197-198, 741-745 (2002).
[CrossRef]

Preuss, S.

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A 61, 33-37 (1995).
[CrossRef]

Pronko, P. P.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
[CrossRef]

Qian, F.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
[CrossRef]

Schreiner, M.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
[CrossRef]

Singh, R. K.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
[CrossRef]

Sokolowski-Tinten, K.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
[CrossRef]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, "Laser-solid interaction in the femtosecond time regime," Appl. Surf. Sci. 109-110, 1-10 (1997).
[CrossRef]

Stuke, M.

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A 61, 33-37 (1995).
[CrossRef]

Thompson, C. V.

J. Jia, M. Li, and C. V. Thompson, "Amorphization of silicon by femtosecond laser pulses," Appl. Phys. Lett. 84, 3205-3207 (2004).
[CrossRef]

Tunnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Valette, S.

S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
[CrossRef]

Vallete, S.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

VanRompay, P. A.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
[CrossRef]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

von der Linde, D.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
[CrossRef]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, "Laser-solid interaction in the femtosecond time regime," Appl. Surf. Sci. 109-110, 1-10 (1997).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multiple femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 01196 (2005).
[CrossRef]

Weatherly, G. C.

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, "Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon," Appl. Phys. A 76, 201-207 (2003).
[CrossRef]

Yokotani, A.

A. Yokotani, T. Mukumoto, Y. Kanamitsu, H. Fukumoto, and K. Kurosawa, "Time-resolving image analysis of drilling of thin silicon substrates with femtosecond laser ablation," Jpn. J. Appl. Phys. 44, 7998-8003 (2005).
[CrossRef]

Appl. Phys. A (4)

S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A 61, 33-37 (1995).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

A. Luft, U. Franz, A. Emsermannn, and J. Kaspar, "A study of thermal and mechanical effects on materials induced by pulsed laser drilling," Appl. Phys. A 63, 93-101 (1996).
[CrossRef]

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, "Transmission and scanning electron microscopy studies of single femtosecond-laser-pulse ablation of silicon," Appl. Phys. A 76, 201-207 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

J. Jia, M. Li, and C. V. Thompson, "Amorphization of silicon by femtosecond laser pulses," Appl. Phys. Lett. 84, 3205-3207 (2004).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation," Appl. Phys. Lett. 86, 01196 (2005).
[CrossRef]

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Vallete, A. Fraczkiewicz, and R. Fortunier, "Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy," Appl. Phys. Lett. 80, 3886-3888 (2002).
[CrossRef]

Appl. Surf. Sci. (3)

S. Valette, R. Le Harzic, E. Audouard, N. Huot, R. Fillit, and R. Fortnuier, "X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals," Appl. Surf. Sci. 252, 4691-4695 (2006).
[CrossRef]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, "Laser-solid interaction in the femtosecond time regime," Appl. Surf. Sci. 109-110, 1-10 (1997).
[CrossRef]

Y. Hirayama and M. Obara, "Heat effects of metals ablated with femtosecond laser pulses," Appl. Surf. Sci. 197-198, 741-745 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. QE-33, 1706-1716 (1997).

J. Appl. Phys. (1)

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Yokotani, T. Mukumoto, Y. Kanamitsu, H. Fukumoto, and K. Kurosawa, "Time-resolving image analysis of drilling of thin silicon substrates with femtosecond laser ablation," Jpn. J. Appl. Phys. 44, 7998-8003 (2005).
[CrossRef]

Mat. Res. Soc. Symp. Proc. (1)

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, "Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses," Mat. Res. Soc. Symp. Proc. 397, 45-51 (1996).
[CrossRef]

Phys. Rev. B (1)

A. Y. Vorobyev and C. Guo, "Enhanced absorptance of gold following multiple femtosecond laser ablation," Phys. Rev. B 72, 195422 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1 .
Fig. 1 .

chematic of the experimental setup to observe in situ the temperature field and measure the heat flow in the silicon specimen irradiated by femtosecond laser pulses.

Fig. 2.
Fig. 2.

Typical thermal images of silicon specimens over time during irradiation with femtosecond laser pulses at spot size of (a) 0.3 mm and power of 210 mW and (b) 0.6 mm and power of 300 mW.

Fig. 3.
Fig. 3.

Temperature profile along the silicon specimen at different incident laser powers for spot sizes of (a) 0.3 mm and (b) 0.6 mm.

Fig. 4.
Fig. 4.

Temperature profiles on the silicon specimen for spot size of 0.6 mm (a) at a position of 4.05 mm from the top of the specimen for different incident laser powers and (b) at different positions along the silicon specimen for incident laser power of 300 mW.

Tables (1)

Tables Icon

Table 1. Percentages of incident laser power for heat flow into the silicon specimens at different incident laser powers

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C e T e t = x [ κ e T e x ] G ( T e T i ) + A ( x , t )
C i T i t = x [ κ i T i x ] + G ( T e T i )

Metrics