Abstract

The birefringence of a number of commercially-available diamond platelets is assessed in the context of their use for intracavity thermal management in lasers. Although diamond is normally thought of as isotropic, significant birefringence is found to be present in some samples, with considerable variation from batch to batch, and in some cases across an individual sample. Nonetheless, low-loss operation is achieved in a laser cavity containing a Brewster element, either by rotating the sample or by using a diamond platelet with low birefringence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, W. W. Walker, R. L. Laycock, J. J. A. Green, and S. T. Cole, "Integrated diamond sapphire laser," Opt. Express 11, 2532-2548 (2003).
    [CrossRef] [PubMed]
  2. J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
    [CrossRef]
  3. Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
    [CrossRef]
  4. W. J. Alford, T. D. Raymond, and A. A. Allerman, "High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser," J. Opt. Soc. Am. B 19, 663-666 (2002).
    [CrossRef]
  5. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
    [CrossRef]
  6. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, "Vertical-external-cavity semiconductor lasers," J. Phys. D 39,R74-R85 (2004).
  7. J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, "High power CW red VECSEL with linearly polarised TEM00 output beam," Opt. Express 13, 77-81 (2005).
    [CrossRef] [PubMed]
  8. J. E. Hastie, "High power surface emitting semiconductor lasers," Ph.D. Thesis, University of Strathclyde, (2004).
  9. J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
    [CrossRef]
  10. J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
    [CrossRef]
  11. K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
    [CrossRef]
  12. H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, "Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers," IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
    [CrossRef]
  13. J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, "Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL," presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006).
  14. N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
    [CrossRef]
  15. A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
    [CrossRef]
  16. D. Nikogosyan, Handbook of Properties of Optical Materials (John Wiley and Sons Ltd, London, 1997).
  17. A. R. Lang, "Causes of Birefringence in Diamond," Nature 213, 248-251 (1967).
    [CrossRef]
  18. M. Abramowitz, Reflected Light Microscopy: An Overview (Olympus America Inc., 1990).
  19. G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, S. Hawkins, M. Baronowski, R. V. Dewees, M. D. Seltzer, A. Guenthner, and D. C. Harris, "Optical Properties of Single-Crystal Chemical-Vapour-Deposited Diamond," presented at 11th DoD Electromagnetic Windows Symposium, (San Diego, 2006).
  20. Z. L. Liau, "Semiconductor wafer bonding via liquid capillarity," Appl. Phys. Lett. 77, 651-653 (2000).
    [CrossRef]
  21. A. Yariv, "Jones Calculus and its Applications to Propagation in Optical Systems with Birefringent Crystals," in Optical Electronics, (Saunders College Publishing, 1991), pp. 16-29.
  22. T. Y. Fan, "Single-Axial Mode, Intracavity Doubled Nd:YAG Laser," IEEE J. Quantum Electron. 27, 2091-2093 (1991).
    [CrossRef]
  23. Element 6, "Diamond Types," (Element 6 Ltd., 2006), http://www.e6.com/e6/page.jsp?pageid=400602030.

2006

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

2005

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, "Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers," IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, "High power CW red VECSEL with linearly polarised TEM00 output beam," Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

2004

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, "Vertical-external-cavity semiconductor lasers," J. Phys. D 39,R74-R85 (2004).

2003

R. L. Fork, W. W. Walker, R. L. Laycock, J. J. A. Green, and S. T. Cole, "Integrated diamond sapphire laser," Opt. Express 11, 2532-2548 (2003).
[CrossRef] [PubMed]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

2002

2000

Z. L. Liau, "Semiconductor wafer bonding via liquid capillarity," Appl. Phys. Lett. 77, 651-653 (2000).
[CrossRef]

1999

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

1991

T. Y. Fan, "Single-Axial Mode, Intracavity Doubled Nd:YAG Laser," IEEE J. Quantum Electron. 27, 2091-2093 (1991).
[CrossRef]

1967

A. R. Lang, "Causes of Birefringence in Diamond," Nature 213, 248-251 (1967).
[CrossRef]

Abram, R.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

Alford, W. J.

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

W. J. Alford, T. D. Raymond, and A. A. Allerman, "High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser," J. Opt. Soc. Am. B 19, 663-666 (2002).
[CrossRef]

Allerman, A. A.

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

W. J. Alford, T. D. Raymond, and A. A. Allerman, "High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser," J. Opt. Soc. Am. B 19, 663-666 (2002).
[CrossRef]

Bengtsson, J.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, "Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers," IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

Beyertt, S.-S.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Brauch, U.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Burns, D.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Calvez, S.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, "High power CW red VECSEL with linearly polarised TEM00 output beam," Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

Cho, S. H.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Cole, S. T.

Dawson, M. D.

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, "High power CW red VECSEL with linearly polarised TEM00 output beam," Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Fan, T. Y.

T. Y. Fan, "Single-Axial Mode, Intracavity Doubled Nd:YAG Laser," IEEE J. Quantum Electron. 27, 2091-2093 (1991).
[CrossRef]

Ferguson, A. I.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

Foreman, H. D.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, "Vertical-external-cavity semiconductor lasers," J. Phys. D 39,R74-R85 (2004).

Fork, R. L.

Garnache, A.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, "Vertical-external-cavity semiconductor lasers," J. Phys. D 39,R74-R85 (2004).

Gerster, E.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, "Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers," IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

Giesen, A.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Glick, Y.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

Goldring, S.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

Green, J. J. A.

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

Hastie, J. E.

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, "High power CW red VECSEL with linearly polarised TEM00 output beam," Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

Hoogland, S. H.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, "Vertical-external-cavity semiconductor lasers," J. Phys. D 39,R74-R85 (2004).

Hopkins, J. M.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Jeon, C. W.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

Jouhti, T.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Kaufman, G.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

Kemp, A. J.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Kim, J. Y.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Kim, K. S.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Kim, T.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Koehler, K.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Kuebler, T.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

Laakso, A.

Lang, A. R.

A. R. Lang, "Causes of Birefringence in Diamond," Nature 213, 248-251 (1967).
[CrossRef]

Larsson, A.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, "Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers," IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

Lavi, R.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

Laycock, R. L.

Lebiush, E.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

Lee, J. H.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Lee, S. M.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Leinonen, T.

Liau, Z. L.

Z. L. Liau, "Semiconductor wafer bonding via liquid capillarity," Appl. Phys. Lett. 77, 651-653 (2000).
[CrossRef]

Lim, S. J.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Lindberg, H.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, "Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers," IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

Lyytikainen, J.

Manz, C.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

Park, Y. J.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Pessa, M.

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, "High power CW red VECSEL with linearly polarised TEM00 output beam," Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Rattunde, M.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Raymond, T. D.

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

W. J. Alford, T. D. Raymond, and A. A. Allerman, "High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser," J. Opt. Soc. Am. B 19, 663-666 (2002).
[CrossRef]

Riis, E.

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Schulz, N.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Smith, S. A.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

Strassner, M.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, "Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers," IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

Sun, H. D.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Tal, A.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

Tropper, A. C.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, "Vertical-external-cavity semiconductor lasers," J. Phys. D 39,R74-R85 (2004).

Tzuk, Y.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

Valentine, G. J.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Wagner, J.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Walker, W. W.

Wilcox, K. G.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, "Vertical-external-cavity semiconductor lasers," J. Phys. D 39,R74-R85 (2004).

Wild, C.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Yoo, J. R.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Appl. Phys. Lett.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, "1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature," Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Z. L. Liau, "Semiconductor wafer bonding via liquid capillarity," Appl. Phys. Lett. 77, 651-653 (2000).
[CrossRef]

Electron. Lett.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, "0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm," Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, C. W. Jeon, S. Calvez, D. Burns, M. D. Dawson, R. Abram, E. Riis, A. I. Ferguson, W. J. Alford, T. D. Raymond, and A. A. Allerman, "Microchip vertical external cavity surface emitting lasers," Electron. Lett. 39, 1324-1326 (2003).
[CrossRef]

IEEE J. Quantum Electron.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, "Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach," IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, "Diamond cooling of high-power diode-pumped solid-state lasers," IEEE J. Quantum Electron. 40, 262-269 (2004).
[CrossRef]

T. Y. Fan, "Single-Axial Mode, Intracavity Doubled Nd:YAG Laser," IEEE J. Quantum Electron. 27, 2091-2093 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and characteristics of high-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, "Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers," IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, "0.5-W single transverse-mode operation of an 850-nm diode- pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

IEEE Photonics Technol. Lett.

N. Schulz, M. Rattunde, C. Manz, K. Koehler, C. Wild, J. Wagner, S.-S. Beyertt, U. Brauch, T. Kuebler, and A. Giesen, "Optically Pumped GaSb-Based VECSEL Emitting 0.6 W at 2.3 μm," IEEE Photonics Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, "Vertical-external-cavity semiconductor lasers," J. Phys. D 39,R74-R85 (2004).

Nature

A. R. Lang, "Causes of Birefringence in Diamond," Nature 213, 248-251 (1967).
[CrossRef]

Opt. Express

Other

Element 6, "Diamond Types," (Element 6 Ltd., 2006), http://www.e6.com/e6/page.jsp?pageid=400602030.

M. Abramowitz, Reflected Light Microscopy: An Overview (Olympus America Inc., 1990).

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, S. Hawkins, M. Baronowski, R. V. Dewees, M. D. Seltzer, A. Guenthner, and D. C. Harris, "Optical Properties of Single-Crystal Chemical-Vapour-Deposited Diamond," presented at 11th DoD Electromagnetic Windows Symposium, (San Diego, 2006).

A. Yariv, "Jones Calculus and its Applications to Propagation in Optical Systems with Birefringent Crystals," in Optical Electronics, (Saunders College Publishing, 1991), pp. 16-29.

D. Nikogosyan, Handbook of Properties of Optical Materials (John Wiley and Sons Ltd, London, 1997).

J. E. Hastie, "High power surface emitting semiconductor lasers," Ph.D. Thesis, University of Strathclyde, (2004).

J.-M. Hopkins, A. J. Maclean, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Koehler, and J. Wagner, "Tunable, Single-frequency, Diode-pumped 2.3μm VECSEL," presented at Conference on Lasers and Electro-Optics, (Long Beach, 2006).

Supplementary Material (1)

» Media 1: AVI (2129 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic diagram of a VECSEL with an intracavity heatspreader; the inset shows the heat removal paths. QWs - quantum wells. (Not to scale)

Fig. 2.
Fig. 2.

Polarisation micrographs of type IIa natural diamond samples from batches 1, 3 and 4. (The sample from batch 1 is bonded to a piece of VECSEL wafer and mounted for laser operation. The visible aperture is 3mm. The others are free-standing and 4mm in diameter.)

Fig. 3.
Fig. 3.

Polarisation micrographs of the synthetic diamond from batch 2. Both samples are free-standing and 4mm in diameter.

Fig. 4.
Fig. 4.

(1.79Mb) Video of rotation of sample (a) from batch 2

Fig. 5.
Fig. 5.

Polarimetry set-up

Fig. 6.
Fig. 6.

Polarimetry measurements taken in reflection on the diamond sample from batch 1 bonded to a VECSEL sample: (a) variation in the maximum and minimum power transmitted through the polariser, (b) variation in the angle at which maximum and minimum transmission are observed; both with half-waveplate angle. (N.B. the angle of the polarisation incident on the sample is twice the angle of the half-waveplate.)

Fig. 7.
Fig. 7.

Variation in the waveplate retardation (a) and its orientation (b) on a line across the width of various diamond samples. The black dotted line part a represents an estimate of the minimum measureable waveplate retardation.

Fig. 8.
Fig. 8.

The output power (a) and Brewster loss per surface (b) in a laser containing a glass Brewster plate as a function of position for various diamond heatspreaders

Fig. 9.
Fig. 9.

The output power as a function of position with no Brewster plate present

Fig. 10.
Fig. 10.

Percentage Brewster loss per surface (four surfaces per round trip) on rotation of the VECSEL-diamond composite around the cavity axis (diamond sample from batch one)

Fig. 11.
Fig. 11.

Percentage round trip loss resulting from VECSEL-diamond composite birefringence as a function of: (a) angular misalignment of the gain element from the Brewster plate for a fractional waveplate retardation of 0.19 (that for the sample from batch 1); (b) the fractional waveplate retardation for four angular misorientations (0° solid red line; 5° dotted blue line; 10° dashed green line; 15° dot-dash brown line).

Tables (1)

Tables Icon

Table 1: Manufacture’s specifications of the diamond used in this work

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ = 2 · π · t · Δ n λ
M ( δ ) = [ e i · δ 2 0 0 e i · δ 2 ]
M RT = R ( φ ) · M ( δ ) · R ( φ ) · B · B · R ( φ ) · M ( δ ) · R ( φ )
R ( φ ) = [ cos ( φ ) sin ( φ ) sin ( φ ) cos ( φ ) ]
B = [ 1 0 0 T ]

Metrics