Abstract

We report the demonstration of a compact, all-solid-state polymer laser system comprising of a Gallium Nitride (GaN) semiconductor diode laser as the pump source. The polymer laser was configured as a surface emitting, distributed Bragg reflector laser (DBR), based on a novel energy transfer blend of Coumarin 102 and the conjugated polymer poly(2- methoxy-5-(2’-ethylhexyloxy)-1,4-phenylene vinylene). In this configuration, diode pumping was possible both due to the improved quality of the resonators and the improved harvesting of the diode laser light.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mat. 11, 363-370 (1999).
    [CrossRef]
  2. M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mat. 12, 1655-1668 (2000).
    [CrossRef]
  3. I. D. W. Samuel and G. A. Turnbull, "Polymer lasers: recent advances," Materials Today 7, 28-35 (2004).
    [CrossRef]
  4. G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, "Light amplification and gain in polyfluorene waveguides," Appl. Phys. Lett. 81, 415-417 (2002).
    [CrossRef]
  5. F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
    [CrossRef]
  6. N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
    [CrossRef]
  7. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, "Sensitivity gain in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
    [CrossRef] [PubMed]
  8. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
    [CrossRef]
  9. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
    [CrossRef]
  10. C. Karnutsch, V. Haug, C. Gaertner, U. Lemmer, T. Farrell, B. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. deMello, and D. D. C. Bradley, "Low threshold blue conjugated polymer DFB lasers," Conference on Lasers and Electro-optics, CLEO, paper CFJ3 (2006).
  11. V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
    [CrossRef] [PubMed]
  12. A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
    [CrossRef]
  13. R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
    [CrossRef]
  14. F. Marchioni, R. Chiechi, S. Patil, and F. Wudl, "Absolute photoluminescence quantum yield enhancement of poly(2-methoxy 5-[2’-ethylhexyloxy]-p-phenylenevinylene)," Appl. Phys. Lett. 89, 061101 1-3 (2006).
    [CrossRef]
  15. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
    [CrossRef]
  16. A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, P. Andrew and W. L. Barnes, ‘Low threshold edge emitting polymer distributed feedback laser based on a square lattice,’ Appl. Phys. Lett. 86, 161102 1-3 (2005).
    [CrossRef]
  17. I.P. Kaminow, H. P. Weber, and E. A. Chandross, "Poly(methyl methacrylate) dye laser with internal diffraction grating resonator," Appl. Phys. Lett. 18, 497-499 (1971).
    [CrossRef]
  18. M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye doped thin films with Forster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
    [CrossRef]
  19. L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
    [CrossRef]
  20. G. F. Barlow, A. Shore, G. A. Turnbull, and I. D. W. Samuel, "Design and analysis of a low-threshold polymer circular-grating distributed-feedback polymer laser," J. Opt. Soc. Am. B 21, 2142-2150 (2004).
    [CrossRef]
  21. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Photonic mode dispersion of a two-dimensional distributed feedback polymer laser," Phys. Rev. B 67, 165107 1-8 (2003).
    [CrossRef]

2006 (3)

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

F. Marchioni, R. Chiechi, S. Patil, and F. Wudl, "Absolute photoluminescence quantum yield enhancement of poly(2-methoxy 5-[2’-ethylhexyloxy]-p-phenylenevinylene)," Appl. Phys. Lett. 89, 061101 1-3 (2006).
[CrossRef]

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

2005 (2)

A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, P. Andrew and W. L. Barnes, ‘Low threshold edge emitting polymer distributed feedback laser based on a square lattice,’ Appl. Phys. Lett. 86, 161102 1-3 (2005).
[CrossRef]

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, "Sensitivity gain in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Photonic mode dispersion of a two-dimensional distributed feedback polymer laser," Phys. Rev. B 67, 165107 1-8 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

2002 (2)

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, "Light amplification and gain in polyfluorene waveguides," Appl. Phys. Lett. 81, 415-417 (2002).
[CrossRef]

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
[CrossRef]

2000 (1)

M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mat. 12, 1655-1668 (2000).
[CrossRef]

1999 (1)

N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mat. 11, 363-370 (1999).
[CrossRef]

1998 (2)

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

1997 (1)

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye doped thin films with Forster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

1996 (2)

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

1995 (1)

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

1971 (1)

I.P. Kaminow, H. P. Weber, and E. A. Chandross, "Poly(methyl methacrylate) dye laser with internal diffraction grating resonator," Appl. Phys. Lett. 18, 497-499 (1971).
[CrossRef]

Andersson, M. R.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Andrew, P.

A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, P. Andrew and W. L. Barnes, ‘Low threshold edge emitting polymer distributed feedback laser based on a square lattice,’ Appl. Phys. Lett. 86, 161102 1-3 (2005).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Photonic mode dispersion of a two-dimensional distributed feedback polymer laser," Phys. Rev. B 67, 165107 1-8 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

Bacher, A.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
[CrossRef]

Barlow, G. F.

Barnes, W. L.

A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, P. Andrew and W. L. Barnes, ‘Low threshold edge emitting polymer distributed feedback laser based on a square lattice,’ Appl. Phys. Lett. 86, 161102 1-3 (2005).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Photonic mode dispersion of a two-dimensional distributed feedback polymer laser," Phys. Rev. B 67, 165107 1-8 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

Berggren, M.

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye doped thin films with Forster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, "Light amplification and gain in polyfluorene waveguides," Appl. Phys. Lett. 81, 415-417 (2002).
[CrossRef]

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
[CrossRef]

Buckley, A. R.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
[CrossRef]

Bulovic, V.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, "Sensitivity gain in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Carro, P. D.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Chandross, E. A.

I.P. Kaminow, H. P. Weber, and E. A. Chandross, "Poly(methyl methacrylate) dye laser with internal diffraction grating resonator," Appl. Phys. Lett. 18, 497-499 (1971).
[CrossRef]

Chiechi, R.

F. Marchioni, R. Chiechi, S. Patil, and F. Wudl, "Absolute photoluminescence quantum yield enhancement of poly(2-methoxy 5-[2’-ethylhexyloxy]-p-phenylenevinylene)," Appl. Phys. Lett. 89, 061101 1-3 (2006).
[CrossRef]

Cingolani, R.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Díaz-García, M. A.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye doped thin films with Forster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

Dogariu, A.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

Farrell, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Forrest, S. R.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Fox, A. M.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
[CrossRef]

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Greenham, N. C.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Gupta, R.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

Hayes, G. R.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Heeger, A. J.

M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mat. 12, 1655-1668 (2000).
[CrossRef]

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Heliotis, G.

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, "Light amplification and gain in polyfluorene waveguides," Appl. Phys. Lett. 81, 415-417 (2002).
[CrossRef]

Hide, F.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Hinze, P.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Holmes, A. B.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Johannes, H.-H.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Kaminow, I.P.

I.P. Kaminow, H. P. Weber, and E. A. Chandross, "Poly(methyl methacrylate) dye laser with internal diffraction grating resonator," Appl. Phys. Lett. 18, 497-499 (1971).
[CrossRef]

Kessener, R. R.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Khalfin, V. B.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Kowalsky, W.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Kozlov, V. G.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Lanzani, G.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Longhi, S.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Madigan, C. F.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, "Sensitivity gain in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Marchioni, F.

F. Marchioni, R. Chiechi, S. Patil, and F. Wudl, "Absolute photoluminescence quantum yield enhancement of poly(2-methoxy 5-[2’-ethylhexyloxy]-p-phenylenevinylene)," Appl. Phys. Lett. 89, 061101 1-3 (2006).
[CrossRef]

McGehee, M. D.

M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mat. 12, 1655-1668 (2000).
[CrossRef]

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

Mele, E.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Moratti, S. C.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Nehls, B.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Park, J. Y.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

Patil, S.

F. Marchioni, R. Chiechi, S. Patil, and F. Wudl, "Absolute photoluminescence quantum yield enhancement of poly(2-methoxy 5-[2’-ethylhexyloxy]-p-phenylenevinylene)," Appl. Phys. Lett. 89, 061101 1-3 (2006).
[CrossRef]

Pei, Q.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Persano, L.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Phillips, R. T.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Pisignano, D.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Rabe, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Riedl, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Rose, A.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, "Sensitivity gain in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Samuel, I. D. W.

A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, P. Andrew and W. L. Barnes, ‘Low threshold edge emitting polymer distributed feedback laser based on a square lattice,’ Appl. Phys. Lett. 86, 161102 1-3 (2005).
[CrossRef]

G. F. Barlow, A. Shore, G. A. Turnbull, and I. D. W. Samuel, "Design and analysis of a low-threshold polymer circular-grating distributed-feedback polymer laser," J. Opt. Soc. Am. B 21, 2142-2150 (2004).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, "Polymer lasers: recent advances," Materials Today 7, 28-35 (2004).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Photonic mode dispersion of a two-dimensional distributed feedback polymer laser," Phys. Rev. B 67, 165107 1-8 (2003).
[CrossRef]

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, "Light amplification and gain in polyfluorene waveguides," Appl. Phys. Lett. 81, 415-417 (2002).
[CrossRef]

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
[CrossRef]

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Scherf, U.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Schwartz, B. J.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Sheridan, A. K.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
[CrossRef]

Shore, A.

Slusher, R. E.

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye doped thin films with Forster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

Srdanov, V.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

Stevenson, M.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

Swager, T. M.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, "Sensitivity gain in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Tessler, N.

N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mat. 11, 363-370 (1999).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Turnbull, G. A.

A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, P. Andrew and W. L. Barnes, ‘Low threshold edge emitting polymer distributed feedback laser based on a square lattice,’ Appl. Phys. Lett. 86, 161102 1-3 (2005).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, "Polymer lasers: recent advances," Materials Today 7, 28-35 (2004).
[CrossRef]

G. F. Barlow, A. Shore, G. A. Turnbull, and I. D. W. Samuel, "Design and analysis of a low-threshold polymer circular-grating distributed-feedback polymer laser," J. Opt. Soc. Am. B 21, 2142-2150 (2004).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Photonic mode dispersion of a two-dimensional distributed feedback polymer laser," Phys. Rev. B 67, 165107 1-8 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, "Light amplification and gain in polyfluorene waveguides," Appl. Phys. Lett. 81, 415-417 (2002).
[CrossRef]

Vasdekis, A. E.

A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, P. Andrew and W. L. Barnes, ‘Low threshold edge emitting polymer distributed feedback laser based on a square lattice,’ Appl. Phys. Lett. 86, 161102 1-3 (2005).
[CrossRef]

Wang, H.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

Wang, J.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Weber, H. P.

I.P. Kaminow, H. P. Weber, and E. A. Chandross, "Poly(methyl methacrylate) dye laser with internal diffraction grating resonator," Appl. Phys. Lett. 18, 497-499 (1971).
[CrossRef]

Weimann, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

Wudl, F.

F. Marchioni, R. Chiechi, S. Patil, and F. Wudl, "Absolute photoluminescence quantum yield enhancement of poly(2-methoxy 5-[2’-ethylhexyloxy]-p-phenylenevinylene)," Appl. Phys. Lett. 89, 061101 1-3 (2006).
[CrossRef]

Zavelani-Rossi, M.

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Zhu, Z.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, "Sensitivity gain in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Adv. Mat. (2)

N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mat. 11, 363-370 (1999).
[CrossRef]

M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Adv. Mat. 12, 1655-1668 (2000).
[CrossRef]

Appl. Phys. Lett. (9)

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, "Light amplification and gain in polyfluorene waveguides," Appl. Phys. Lett. 81, 415-417 (2002).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 1-3 (2006).
[CrossRef]

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, H. Wang, "Low threshold amplified spontaneous emission in blends of conjugated polymers," Appl. Phys. Lett. 73, 3492-3494 (1998).
[CrossRef]

F. Marchioni, R. Chiechi, S. Patil, and F. Wudl, "Absolute photoluminescence quantum yield enhancement of poly(2-methoxy 5-[2’-ethylhexyloxy]-p-phenylenevinylene)," Appl. Phys. Lett. 89, 061101 1-3 (2006).
[CrossRef]

A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, P. Andrew and W. L. Barnes, ‘Low threshold edge emitting polymer distributed feedback laser based on a square lattice,’ Appl. Phys. Lett. 86, 161102 1-3 (2005).
[CrossRef]

I.P. Kaminow, H. P. Weber, and E. A. Chandross, "Poly(methyl methacrylate) dye laser with internal diffraction grating resonator," Appl. Phys. Lett. 18, 497-499 (1971).
[CrossRef]

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye doped thin films with Forster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

L. Persano, P. D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, "Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors," Appl. Phys. Lett. 88, 121110 1-3 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, and A. B. Holmes, "Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers," Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

J. Appl. Phys. (1)

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, "Efficient energy transfer in organic thin films—implications for organic lasers," J. Appl. Phys. 92, 6367-6371 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Materials Today (1)

I. D. W. Samuel and G. A. Turnbull, "Polymer lasers: recent advances," Materials Today 7, 28-35 (2004).
[CrossRef]

Nature (2)

N. Tessler, G. J. Denton, and R. H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, "Sensitivity gain in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Phys. Rev. B (1)

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Photonic mode dispersion of a two-dimensional distributed feedback polymer laser," Phys. Rev. B 67, 165107 1-8 (2003).
[CrossRef]

Science (2)

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Other (1)

C. Karnutsch, V. Haug, C. Gaertner, U. Lemmer, T. Farrell, B. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. deMello, and D. D. C. Bradley, "Low threshold blue conjugated polymer DFB lasers," Conference on Lasers and Electro-optics, CLEO, paper CFJ3 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a). The absorbance for a neat MEH-PPV film, Coumarin 102 in chlorobenzene solution (x5) and their blends in solid state with dye concentrations of 33, 50 and 60 wt.%. The absorbance of each film is normalized at 496 nm to compensate for the different red chromophore densities in each blend. The emission wavelength of the GaN diode is also shown (black arrow). (b): The PLQY values (lower) and ASE thresholds (upper) are plotted as a function of the doping concentration. The molecular structures of MEH-PPV (red) and the Coumarin 102 dye (blue) are also shown.

Fig. 2.
Fig. 2.

Left: a cross-sectional schematic of a polymer DBR laser. The planar polymer film is the amplifying region and the corrugated surfaces on the right and left are the Bragg reflectors. Right: An SEM image of a representative grating structure fabricated on fused silica using electron-beam lithography. The area between the gratings is also etched to form a channel waveguide for lateral confinement.

Fig. 3.
Fig. 3.

(a). The emission spectra above (0.67 nJ) and below threshold (0.27 nJ), where both the DBR and ‘mirror modes’ are shown. (b) The input-output relationship for the laser peak at 625.6 nm (blue) and the spontaneous emission at 632.1 nm (red). The lines are a guide to the eye. (c) The normalized emission spectra for different excitation densities. The normalization level was chosen at the wavelength of 632.1 nm corresponding to the spontaneous emission and is denoted by the blue arrow.

Metrics