Abstract

An organic-inorganic photopolymers have been studied for their potential in of reducing the volume shrinkage during photopolymerization and enhancing the dimensional stability of photopolymers. We demonstrate the diffraction efficiency of photopolymers could be significantly enhanced by the interfacial interactions induced at the surface of inorganic nanoparticles.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis and F. Mok, "Holographic memories," Sci.Am. 273, 70-76 (1995).
    [CrossRef]
  2. T.J. Trentler, J.E. Boyd and V.L. Colvin, "Epoxy resin−photopolymer composites for volume holography," Chem.Mater. 12, 1431-1438 (2000).
    [CrossRef]
  3. R.A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc.SPIE 2405, 2-23 (1995).
    [CrossRef]
  4. S. Martin, C.A. Feely and V. Toal, "Holographic recording characteristics of an acrylamide-based photopolymer," Appl.Opt. 36, 5757-5768 (1997).
    [CrossRef] [PubMed]
  5. U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram and M.M. Mirsalehi, "Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories," Opt.Eng. 32, 1839-1847 (1993)
    [CrossRef]
  6. M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt.Lett. 24, 658-660 (1999).
    [CrossRef]
  7. H. Krug and H. Schmidt, "Organic-inorganic nanocomposites for micro optical applications," New J.Chem. 18, 1125-1129 (1994).
  8. P.W. Oliveira, H. Krug, P. Mueller and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion- controlled organic-inorganic nanocomposite materials," Mater.Res.Soc.Symp.Proc. 435, 553-558 (1996).
    [CrossRef]
  9. D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
    [CrossRef]
  10. N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl.Phys.Lett. 81, 4121-4123 (2002).
    [CrossRef]
  11. N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," JPN.J.Appl.Phys. 42, L927-L929 (2003).
    [CrossRef]
  12. R. Diguet, "Density dependence of refractive index and static dielectric constant," Physica 139, 126-130 (1986).
  13. Wu. Kechen, J.G. Snijders and C. Lin, "Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters," J.Phys.Chem. 106, 8954-8958 (2002).
    [CrossRef]

2003 (1)

N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," JPN.J.Appl.Phys. 42, L927-L929 (2003).
[CrossRef]

2002 (2)

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl.Phys.Lett. 81, 4121-4123 (2002).
[CrossRef]

Wu. Kechen, J.G. Snijders and C. Lin, "Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters," J.Phys.Chem. 106, 8954-8958 (2002).
[CrossRef]

2000 (1)

T.J. Trentler, J.E. Boyd and V.L. Colvin, "Epoxy resin−photopolymer composites for volume holography," Chem.Mater. 12, 1431-1438 (2000).
[CrossRef]

1999 (1)

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt.Lett. 24, 658-660 (1999).
[CrossRef]

1997 (1)

S. Martin, C.A. Feely and V. Toal, "Holographic recording characteristics of an acrylamide-based photopolymer," Appl.Opt. 36, 5757-5768 (1997).
[CrossRef] [PubMed]

1996 (2)

P.W. Oliveira, H. Krug, P. Mueller and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion- controlled organic-inorganic nanocomposite materials," Mater.Res.Soc.Symp.Proc. 435, 553-558 (1996).
[CrossRef]

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

1995 (2)

R.A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc.SPIE 2405, 2-23 (1995).
[CrossRef]

D. Psaltis and F. Mok, "Holographic memories," Sci.Am. 273, 70-76 (1995).
[CrossRef]

1994 (1)

H. Krug and H. Schmidt, "Organic-inorganic nanocomposites for micro optical applications," New J.Chem. 18, 1125-1129 (1994).

1993 (1)

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram and M.M. Mirsalehi, "Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories," Opt.Eng. 32, 1839-1847 (1993)
[CrossRef]

1986 (1)

R. Diguet, "Density dependence of refractive index and static dielectric constant," Physica 139, 126-130 (1986).

Boyd, J.E.

T.J. Trentler, J.E. Boyd and V.L. Colvin, "Epoxy resin−photopolymer composites for volume holography," Chem.Mater. 12, 1431-1438 (2000).
[CrossRef]

Caufield, H.J.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram and M.M. Mirsalehi, "Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories," Opt.Eng. 32, 1839-1847 (1993)
[CrossRef]

Colvin, V.L.

T.J. Trentler, J.E. Boyd and V.L. Colvin, "Epoxy resin−photopolymer composites for volume holography," Chem.Mater. 12, 1431-1438 (2000).
[CrossRef]

Dhal, P.K.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Dhar, L.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt.Lett. 24, 658-660 (1999).
[CrossRef]

Diguet, R.

R. Diguet, "Density dependence of refractive index and static dielectric constant," Physica 139, 126-130 (1986).

Feely, C.A.

S. Martin, C.A. Feely and V. Toal, "Holographic recording characteristics of an acrylamide-based photopolymer," Appl.Opt. 36, 5757-5768 (1997).
[CrossRef] [PubMed]

Horner, M.G.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Ingwall, R.T.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Kojima, T.

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl.Phys.Lett. 81, 4121-4123 (2002).
[CrossRef]

Kolb, E.S.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Krug, H.

P.W. Oliveira, H. Krug, P. Mueller and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion- controlled organic-inorganic nanocomposite materials," Mater.Res.Soc.Symp.Proc. 435, 553-558 (1996).
[CrossRef]

H. Krug and H. Schmidt, "Organic-inorganic nanocomposites for micro optical applications," New J.Chem. 18, 1125-1129 (1994).

Lessard, R.A.

R.A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc.SPIE 2405, 2-23 (1995).
[CrossRef]

Li, H.Y.S.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Manivannan, G.

R.A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc.SPIE 2405, 2-23 (1995).
[CrossRef]

Martin, S.

S. Martin, C.A. Feely and V. Toal, "Holographic recording characteristics of an acrylamide-based photopolymer," Appl.Opt. 36, 5757-5768 (1997).
[CrossRef] [PubMed]

Minns, R.A.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Mirsalehi, M.M.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram and M.M. Mirsalehi, "Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories," Opt.Eng. 32, 1839-1847 (1993)
[CrossRef]

Mok, F.

D. Psaltis and F. Mok, "Holographic memories," Sci.Am. 273, 70-76 (1995).
[CrossRef]

Mueller, P.

P.W. Oliveira, H. Krug, P. Mueller and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion- controlled organic-inorganic nanocomposite materials," Mater.Res.Soc.Symp.Proc. 435, 553-558 (1996).
[CrossRef]

Oliveira, P.W.

P.W. Oliveira, H. Krug, P. Mueller and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion- controlled organic-inorganic nanocomposite materials," Mater.Res.Soc.Symp.Proc. 435, 553-558 (1996).
[CrossRef]

Pate, S.S.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt.Lett. 24, 658-660 (1999).
[CrossRef]

Psaltis, D.

D. Psaltis and F. Mok, "Holographic memories," Sci.Am. 273, 70-76 (1995).
[CrossRef]

Rhee, U.S.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram and M.M. Mirsalehi, "Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories," Opt.Eng. 32, 1839-1847 (1993)
[CrossRef]

Schild, H.G.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Schilling, M.L.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt.Lett. 24, 658-660 (1999).
[CrossRef]

Schmidt, H.

P.W. Oliveira, H. Krug, P. Mueller and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion- controlled organic-inorganic nanocomposite materials," Mater.Res.Soc.Symp.Proc. 435, 553-558 (1996).
[CrossRef]

H. Krug and H. Schmidt, "Organic-inorganic nanocomposites for micro optical applications," New J.Chem. 18, 1125-1129 (1994).

Schnoes, M.G.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt.Lett. 24, 658-660 (1999).
[CrossRef]

Shamir, J.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram and M.M. Mirsalehi, "Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories," Opt.Eng. 32, 1839-1847 (1993)
[CrossRef]

Suzuki, N.

N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," JPN.J.Appl.Phys. 42, L927-L929 (2003).
[CrossRef]

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl.Phys.Lett. 81, 4121-4123 (2002).
[CrossRef]

Toal, V.

S. Martin, C.A. Feely and V. Toal, "Holographic recording characteristics of an acrylamide-based photopolymer," Appl.Opt. 36, 5757-5768 (1997).
[CrossRef] [PubMed]

Tomita, Y.

N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," JPN.J.Appl.Phys. 42, L927-L929 (2003).
[CrossRef]

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl.Phys.Lett. 81, 4121-4123 (2002).
[CrossRef]

Trentler, T.J.

T.J. Trentler, J.E. Boyd and V.L. Colvin, "Epoxy resin−photopolymer composites for volume holography," Chem.Mater. 12, 1431-1438 (2000).
[CrossRef]

Vikram, C.S.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram and M.M. Mirsalehi, "Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories," Opt.Eng. 32, 1839-1847 (1993)
[CrossRef]

Waldman, D.A.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Wiltzius, P.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt.Lett. 24, 658-660 (1999).
[CrossRef]

Appl.Opt. (1)

S. Martin, C.A. Feely and V. Toal, "Holographic recording characteristics of an acrylamide-based photopolymer," Appl.Opt. 36, 5757-5768 (1997).
[CrossRef] [PubMed]

Appl.Phys. (1)

N. Suzuki and Y. Tomita, "Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films," JPN.J.Appl.Phys. 42, L927-L929 (2003).
[CrossRef]

Appl.Phys.Lett. (1)

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl.Phys.Lett. 81, 4121-4123 (2002).
[CrossRef]

Chem.Mater. (1)

T.J. Trentler, J.E. Boyd and V.L. Colvin, "Epoxy resin−photopolymer composites for volume holography," Chem.Mater. 12, 1431-1438 (2000).
[CrossRef]

J.Phys.Chem. (1)

Wu. Kechen, J.G. Snijders and C. Lin, "Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters," J.Phys.Chem. 106, 8954-8958 (2002).
[CrossRef]

Mater.Res.Soc.Symp.Proc. (1)

P.W. Oliveira, H. Krug, P. Mueller and H. Schmidt, "Fabrication of GRIN-materials by photopolymerization of diffusion- controlled organic-inorganic nanocomposite materials," Mater.Res.Soc.Symp.Proc. 435, 553-558 (1996).
[CrossRef]

New J.Chem. (1)

H. Krug and H. Schmidt, "Organic-inorganic nanocomposites for micro optical applications," New J.Chem. 18, 1125-1129 (1994).

Opt.Eng. (1)

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram and M.M. Mirsalehi, "Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories," Opt.Eng. 32, 1839-1847 (1993)
[CrossRef]

Opt.Lett. (1)

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt.Lett. 24, 658-660 (1999).
[CrossRef]

Physica (1)

R. Diguet, "Density dependence of refractive index and static dielectric constant," Physica 139, 126-130 (1986).

Proc.SPIE (2)

R.A. Lessard and G. Manivannan, "Holographic recording materials: an overview," Proc.SPIE 2405, 2-23 (1995).
[CrossRef]

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns and H.G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," Proc.SPIE 1689, 127-141 (1996).
[CrossRef]

Sci.Am. (1)

D. Psaltis and F. Mok, "Holographic memories," Sci.Am. 273, 70-76 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Molecular structure of components of photopolymer. (a) P(MMA-co-MAA) (b) Acryl amide (c) Triethanolamine (d) Irgacure 784

Fig. 2.
Fig. 2.

Temporal traces of diffraction efficiency of photopolymers. (a) Photopolymer without silica particles (b) photopolymer with silica nanoparticles

Fig. 3.
Fig. 3.

Fluorescence microscopic image of grating patterns recorded in the photopolymers. (a) photopolymer without silica particles (b) photopolymer with silica nanoparticles

Fig. 4.
Fig. 4.

Diffraction efficiency behavior of photopolymers containing carbon contents of 4%, 66%. (a) diffraction efficiency with exposure time (b) diffraction efficiency of the photopolymer containing carbon content of 4% (c) diffraction efficiency of the photopolymer containing carbon content of 66%

Fig. 5.
Fig. 5.

Diffraction behavior of hydrophobic photopolymers based on PMMA/Vinyl carbazole/DBP/Irgacure 784. (a) without silica nanoparticles (b) with hydrophilic silica nanoparticles (c) with hydrophobic silica nanoparticles

Fig. 6.
Fig. 6.

UV/Vis spectra of silica dispersion.

Fig. 7.
Fig. 7.

Illustration on the interfacial structure of hybrid photopolymer. (a) Dark region (b) Bright region

Fig. 8.
Fig. 8.

(A) Schematic illustration on the sample preparation for FT-IR. (B) FT-IR spectra of AA/silica composites. (a) silica nanoparticle (b) dark region (c) bright region

Metrics