Abstract

An organic-inorganic photopolymers have been studied for their potential in of reducing the volume shrinkage during photopolymerization and enhancing the dimensional stability of photopolymers. We demonstrate the diffraction efficiency of photopolymers could be significantly enhanced by the interfacial interactions induced at the surface of inorganic nanoparticles.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis and F. Mok, “Holographic memories,” Sci.Am. 273, 70–76 (1995).
    [CrossRef]
  2. T.J. Trentler, J.E. Boyd, and V.L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem.Mater. 12, 1431–1438 (2000).
    [CrossRef]
  3. R.A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc.SPIE 2405, 2–23 (1995).
    [CrossRef]
  4. S. Martin, C.A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl.Opt. 36, 5757–5768 (1997).
    [CrossRef] [PubMed]
  5. U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram, and M.M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt.Eng. 32, 1839–1847 (1993)
    [CrossRef]
  6. M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt.Lett. 24, 658–660 (1999).
    [CrossRef]
  7. H. Krug and H. Schmidt, “Organic-inorganic nanocomposites for micro optical applications,” New J.Chem. 18, 1125–1129 (1994).
  8. P.W. Oliveira, H. Krug, P. Mueller, and H. Schmidt, “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” Mater.Res.Soc.Symp.Proc. 435, 553–558 (1996).
    [CrossRef]
  9. D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
    [CrossRef]
  10. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl.Phys.Lett. 81, 4121–4123 (2002).
    [CrossRef]
  11. N. Suzuki and Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” JPN.J.Appl.Phys. 42, L927–L929 (2003).
    [CrossRef]
  12. R. Diguet, “Density dependence of refractive index and static dielectric constant,” Physica 139, 126–130 (1986).
  13. Wu. Kechen, J.G. Snijders, and C. Lin, “Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters,” J.Phys.Chem. 106, 8954–8958 (2002).
    [CrossRef]

2003 (1)

N. Suzuki and Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” JPN.J.Appl.Phys. 42, L927–L929 (2003).
[CrossRef]

2002 (2)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl.Phys.Lett. 81, 4121–4123 (2002).
[CrossRef]

Wu. Kechen, J.G. Snijders, and C. Lin, “Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters,” J.Phys.Chem. 106, 8954–8958 (2002).
[CrossRef]

2000 (1)

T.J. Trentler, J.E. Boyd, and V.L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem.Mater. 12, 1431–1438 (2000).
[CrossRef]

1999 (1)

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt.Lett. 24, 658–660 (1999).
[CrossRef]

1997 (1)

S. Martin, C.A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl.Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

1996 (2)

P.W. Oliveira, H. Krug, P. Mueller, and H. Schmidt, “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” Mater.Res.Soc.Symp.Proc. 435, 553–558 (1996).
[CrossRef]

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

1995 (2)

R.A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc.SPIE 2405, 2–23 (1995).
[CrossRef]

D. Psaltis and F. Mok, “Holographic memories,” Sci.Am. 273, 70–76 (1995).
[CrossRef]

1994 (1)

H. Krug and H. Schmidt, “Organic-inorganic nanocomposites for micro optical applications,” New J.Chem. 18, 1125–1129 (1994).

1993 (1)

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram, and M.M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt.Eng. 32, 1839–1847 (1993)
[CrossRef]

1986 (1)

R. Diguet, “Density dependence of refractive index and static dielectric constant,” Physica 139, 126–130 (1986).

Boyd, J.E.

T.J. Trentler, J.E. Boyd, and V.L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem.Mater. 12, 1431–1438 (2000).
[CrossRef]

Caufield, H.J.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram, and M.M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt.Eng. 32, 1839–1847 (1993)
[CrossRef]

Colvin, V.L.

T.J. Trentler, J.E. Boyd, and V.L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem.Mater. 12, 1431–1438 (2000).
[CrossRef]

Dhal, P.K.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Dhar, L.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt.Lett. 24, 658–660 (1999).
[CrossRef]

Diguet, R.

R. Diguet, “Density dependence of refractive index and static dielectric constant,” Physica 139, 126–130 (1986).

Feely, C.A.

S. Martin, C.A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl.Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

Horner, M.G.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Ingwall, R.T.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Kechen, Wu.

Wu. Kechen, J.G. Snijders, and C. Lin, “Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters,” J.Phys.Chem. 106, 8954–8958 (2002).
[CrossRef]

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl.Phys.Lett. 81, 4121–4123 (2002).
[CrossRef]

Kolb, E.S.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Krug, H.

P.W. Oliveira, H. Krug, P. Mueller, and H. Schmidt, “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” Mater.Res.Soc.Symp.Proc. 435, 553–558 (1996).
[CrossRef]

H. Krug and H. Schmidt, “Organic-inorganic nanocomposites for micro optical applications,” New J.Chem. 18, 1125–1129 (1994).

Lessard, R.A.

R.A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc.SPIE 2405, 2–23 (1995).
[CrossRef]

Li, H.Y.S.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Lin, C.

Wu. Kechen, J.G. Snijders, and C. Lin, “Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters,” J.Phys.Chem. 106, 8954–8958 (2002).
[CrossRef]

Manivannan, G.

R.A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc.SPIE 2405, 2–23 (1995).
[CrossRef]

Martin, S.

S. Martin, C.A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl.Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

Minns, R.A.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Mirsalehi, M.M.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram, and M.M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt.Eng. 32, 1839–1847 (1993)
[CrossRef]

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci.Am. 273, 70–76 (1995).
[CrossRef]

Mueller, P.

P.W. Oliveira, H. Krug, P. Mueller, and H. Schmidt, “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” Mater.Res.Soc.Symp.Proc. 435, 553–558 (1996).
[CrossRef]

Oliveira, P.W.

P.W. Oliveira, H. Krug, P. Mueller, and H. Schmidt, “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” Mater.Res.Soc.Symp.Proc. 435, 553–558 (1996).
[CrossRef]

Pate, S.S.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt.Lett. 24, 658–660 (1999).
[CrossRef]

Psaltis, D.

D. Psaltis and F. Mok, “Holographic memories,” Sci.Am. 273, 70–76 (1995).
[CrossRef]

Rhee, U.S.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram, and M.M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt.Eng. 32, 1839–1847 (1993)
[CrossRef]

Schild, H.G.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Schilling, M.L.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt.Lett. 24, 658–660 (1999).
[CrossRef]

Schmidt, H.

P.W. Oliveira, H. Krug, P. Mueller, and H. Schmidt, “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” Mater.Res.Soc.Symp.Proc. 435, 553–558 (1996).
[CrossRef]

H. Krug and H. Schmidt, “Organic-inorganic nanocomposites for micro optical applications,” New J.Chem. 18, 1125–1129 (1994).

Schnoes, M.G.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt.Lett. 24, 658–660 (1999).
[CrossRef]

Shamir, J.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram, and M.M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt.Eng. 32, 1839–1847 (1993)
[CrossRef]

Snijders, J.G.

Wu. Kechen, J.G. Snijders, and C. Lin, “Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters,” J.Phys.Chem. 106, 8954–8958 (2002).
[CrossRef]

Suzuki, N.

N. Suzuki and Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” JPN.J.Appl.Phys. 42, L927–L929 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl.Phys.Lett. 81, 4121–4123 (2002).
[CrossRef]

Toal, V.

S. Martin, C.A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl.Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

Tomita, Y.

N. Suzuki and Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” JPN.J.Appl.Phys. 42, L927–L929 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl.Phys.Lett. 81, 4121–4123 (2002).
[CrossRef]

Trentler, T.J.

T.J. Trentler, J.E. Boyd, and V.L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem.Mater. 12, 1431–1438 (2000).
[CrossRef]

Vikram, C.S.

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram, and M.M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt.Eng. 32, 1839–1847 (1993)
[CrossRef]

Waldman, D.A.

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Wiltzius, P.

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt.Lett. 24, 658–660 (1999).
[CrossRef]

Appl.Opt. (1)

S. Martin, C.A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl.Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

Appl.Phys.Lett. (1)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl.Phys.Lett. 81, 4121–4123 (2002).
[CrossRef]

Chem.Mater. (1)

T.J. Trentler, J.E. Boyd, and V.L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem.Mater. 12, 1431–1438 (2000).
[CrossRef]

J.Phys.Chem. (1)

Wu. Kechen, J.G. Snijders, and C. Lin, “Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters,” J.Phys.Chem. 106, 8954–8958 (2002).
[CrossRef]

JPN.J.Appl.Phys. (1)

N. Suzuki and Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” JPN.J.Appl.Phys. 42, L927–L929 (2003).
[CrossRef]

Mater.Res.Soc.Symp.Proc. (1)

P.W. Oliveira, H. Krug, P. Mueller, and H. Schmidt, “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” Mater.Res.Soc.Symp.Proc. 435, 553–558 (1996).
[CrossRef]

New J.Chem. (1)

H. Krug and H. Schmidt, “Organic-inorganic nanocomposites for micro optical applications,” New J.Chem. 18, 1125–1129 (1994).

Opt.Eng. (1)

U.S. Rhee, H.J. Caufield, J. Shamir, C.S. Vikram, and M.M. Mirsalehi, “Characteristics of the Du Pont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt.Eng. 32, 1839–1847 (1993)
[CrossRef]

Opt.Lett. (1)

M.G. Schnoes, L. Dhar, M.L. Schilling, S.S. Pate, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt.Lett. 24, 658–660 (1999).
[CrossRef]

Physica (1)

R. Diguet, “Density dependence of refractive index and static dielectric constant,” Physica 139, 126–130 (1986).

Proc.SPIE (2)

R.A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc.SPIE 2405, 2–23 (1995).
[CrossRef]

D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.Y.S. Li, R.A. Minns, and H.G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc.SPIE 1689, 127–141 (1996).
[CrossRef]

Sci.Am. (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci.Am. 273, 70–76 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Molecular structure of components of photopolymer. (a) P(MMA-co-MAA) (b) Acryl amide (c) Triethanolamine (d) Irgacure 784

Fig. 2.
Fig. 2.

Temporal traces of diffraction efficiency of photopolymers. (a) Photopolymer without silica particles (b) photopolymer with silica nanoparticles

Fig. 3.
Fig. 3.

Fluorescence microscopic image of grating patterns recorded in the photopolymers. (a) photopolymer without silica particles (b) photopolymer with silica nanoparticles

Fig. 4.
Fig. 4.

Diffraction efficiency behavior of photopolymers containing carbon contents of 4%, 66%. (a) diffraction efficiency with exposure time (b) diffraction efficiency of the photopolymer containing carbon content of 4% (c) diffraction efficiency of the photopolymer containing carbon content of 66%

Fig. 5.
Fig. 5.

Diffraction behavior of hydrophobic photopolymers based on PMMA/Vinyl carbazole/DBP/Irgacure 784. (a) without silica nanoparticles (b) with hydrophilic silica nanoparticles (c) with hydrophobic silica nanoparticles

Fig. 6.
Fig. 6.

UV/Vis spectra of silica dispersion.

Fig. 7.
Fig. 7.

Illustration on the interfacial structure of hybrid photopolymer. (a) Dark region (b) Bright region

Fig. 8.
Fig. 8.

(A) Schematic illustration on the sample preparation for FT-IR. (B) FT-IR spectra of AA/silica composites. (a) silica nanoparticle (b) dark region (c) bright region

Metrics