Abstract

We have realized a conical matter wave lens. The repulsive potential of a focused laser beam was used to launch a Bose-Einstein condensate into a radially expanding wavepacket whose perfect ring shape was ensured by energy conservation. In spite of significant interactions between atoms, the spatial and velocity widths of the ring along its radial dimension remained extremely narrow, as also confirmed by numerical simulations. Our results open the possibility for cylindrical atom optics without the perturbing effect of mean-field interactions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Adams, M. Sigel, and J. Mlynek, "Atom optics," Phys. Reports 240, 143-210 (1994).
    [CrossRef]
  2. M. Morinaga, M. Yasuda, T. Kishimoto, and F. Shimizu, "Holographic Manipulation of a Cold Atomic Beam," Phys. Rev. Lett. 77, 802-805 (1996).
    [CrossRef] [PubMed]
  3. "Special Issue on Atom Optics," Quantum and Semiclassical Optics: J. Eur. Opt. Soc. Part B 8, 495 (1996).
  4. P. R. Berman, ed., Atom Interferometry (Academic Press, San Diego, 1997).
  5. P. Meystre, Atom optics, Springer series on atomic, optical, and plasma physics; 33 (AIP Press/Springer, New York :, 2001).
  6. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
    [CrossRef] [PubMed]
  7. J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, "Laser-focused atomic deposition," Science 262, 877-880 (1993).
    [CrossRef] [PubMed]
  8. C. Henkel, J. Schmiedmayer, C. Westbrook, and eds., "Special Issue - Atom chips: manipulating atoms and molecules with microfabricated structures," Eur. Phys. J. D 35(1), 1-2 (2005).
    [CrossRef]
  9. J. G. Kalnins, J. M. Amini, and H. Gould, "Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet," Phys. Rev. A 72, 043,406 (2005).
    [CrossRef]
  10. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. v. d. Zouw, and A. Zeilinger, "Wave-particle duality of C60 molecules," Nature 401, 680-682 (1999).
    [CrossRef]
  11. D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, "From Single- to Multiple-Photon Decoherence in an Atom Interferometer," Phys. Rev. Lett. 86, 2191-2195 (2001).
    [CrossRef] [PubMed]
  12. S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
    [CrossRef]
  13. E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
    [CrossRef] [PubMed]
  14. N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
    [CrossRef]
  15. A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
    [CrossRef]
  16. G. Roati, E. d. Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, "Atom Interferometry with Trapped Fermi Gases," Phys. Rev. Lett. 92, 230,402 (2004).
    [CrossRef]
  17. D. S. Naik, S. R. Muniz, and C. Raman, "Metastable Bose-Einstein condensate in a linear potential," Phys. Rev. A 72, 051,606 (2005).
    [CrossRef]
  18. E. Majorana, "Orientated atoms in a variable magnetic field," Nuovo Cimento 9, 43-50 (1932).
    [CrossRef]
  19. D. S. Naik and C. Raman, "Optically plugged quadrupole trap for Bose-Einstein condensates," Phys. Rev. A 71, 033,617 (2005).
    [CrossRef]
  20. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. v. Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms," Phys. Rev. Lett. 75, 3969-3973 (1995).
    [CrossRef] [PubMed]
  21. W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
    [CrossRef] [PubMed]
  22. I. Bloch, M. Kohl, M. Greiner, T. W. Hansch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030,401 (2001).
    [CrossRef]
  23. A. S. Arnold, C. MacCormick, and M. G. Boshier, "Diffraction-limited focusing of Bose-Einstein condensates," J. Phys. B 37, 485 (2004).
    [CrossRef]
  24. L. Pitaevskii and S. Stringari, Bose-Einstein condensation, International Series of Monographs on Physics (Clarendon Press, Oxford, 2003).
  25. J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
    [CrossRef]
  26. M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
    [CrossRef]
  27. Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
    [CrossRef]

2006

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

2005

D. S. Naik, S. R. Muniz, and C. Raman, "Metastable Bose-Einstein condensate in a linear potential," Phys. Rev. A 72, 051,606 (2005).
[CrossRef]

D. S. Naik and C. Raman, "Optically plugged quadrupole trap for Bose-Einstein condensates," Phys. Rev. A 71, 033,617 (2005).
[CrossRef]

C. Henkel, J. Schmiedmayer, C. Westbrook, and eds., "Special Issue - Atom chips: manipulating atoms and molecules with microfabricated structures," Eur. Phys. J. D 35(1), 1-2 (2005).
[CrossRef]

J. G. Kalnins, J. M. Amini, and H. Gould, "Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet," Phys. Rev. A 72, 043,406 (2005).
[CrossRef]

2004

G. Roati, E. d. Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, "Atom Interferometry with Trapped Fermi Gases," Phys. Rev. Lett. 92, 230,402 (2004).
[CrossRef]

A. S. Arnold, C. MacCormick, and M. G. Boshier, "Diffraction-limited focusing of Bose-Einstein condensates," J. Phys. B 37, 485 (2004).
[CrossRef]

2003

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

2001

D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, "From Single- to Multiple-Photon Decoherence in an Atom Interferometer," Phys. Rev. Lett. 86, 2191-2195 (2001).
[CrossRef] [PubMed]

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

I. Bloch, M. Kohl, M. Greiner, T. W. Hansch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030,401 (2001).
[CrossRef]

1999

M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. v. d. Zouw, and A. Zeilinger, "Wave-particle duality of C60 molecules," Nature 401, 680-682 (1999).
[CrossRef]

E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
[CrossRef] [PubMed]

1998

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
[CrossRef]

1997

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

1996

W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
[CrossRef] [PubMed]

M. Morinaga, M. Yasuda, T. Kishimoto, and F. Shimizu, "Holographic Manipulation of a Cold Atomic Beam," Phys. Rev. Lett. 77, 802-805 (1996).
[CrossRef] [PubMed]

"Special Issue on Atom Optics," Quantum and Semiclassical Optics: J. Eur. Opt. Soc. Part B 8, 495 (1996).

1995

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. v. Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms," Phys. Rev. Lett. 75, 3969-3973 (1995).
[CrossRef] [PubMed]

1994

C. S. Adams, M. Sigel, and J. Mlynek, "Atom optics," Phys. Reports 240, 143-210 (1994).
[CrossRef]

1993

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, "Laser-focused atomic deposition," Science 262, 877-880 (1993).
[CrossRef] [PubMed]

1992

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
[CrossRef] [PubMed]

1932

E. Majorana, "Orientated atoms in a variable magnetic field," Nuovo Cimento 9, 43-50 (1932).
[CrossRef]

Adams, C. S.

C. S. Adams, M. Sigel, and J. Mlynek, "Atom optics," Phys. Reports 240, 143-210 (1994).
[CrossRef]

Amini, J. M.

J. G. Kalnins, J. M. Amini, and H. Gould, "Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet," Phys. Rev. A 72, 043,406 (2005).
[CrossRef]

Andrews, M. R.

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
[CrossRef]

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. v. Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms," Phys. Rev. Lett. 75, 3969-3973 (1995).
[CrossRef] [PubMed]

Arndt, M.

M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. v. d. Zouw, and A. Zeilinger, "Wave-particle duality of C60 molecules," Nature 401, 680-682 (1999).
[CrossRef]

Arnold, A. S.

A. S. Arnold, C. MacCormick, and M. G. Boshier, "Diffraction-limited focusing of Bose-Einstein condensates," J. Phys. B 37, 485 (2004).
[CrossRef]

Aspect, A.

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

Behringer, R. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
[CrossRef] [PubMed]

Berggren, K. K.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
[CrossRef] [PubMed]

Bloch, I.

I. Bloch, M. Kohl, M. Greiner, T. W. Hansch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030,401 (2001).
[CrossRef]

Boshier, M. G.

A. S. Arnold, C. MacCormick, and M. G. Boshier, "Diffraction-limited focusing of Bose-Einstein condensates," J. Phys. B 37, 485 (2004).
[CrossRef]

Bouyer, P.

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

Celotta, R. J.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, "Laser-focused atomic deposition," Science 262, 877-880 (1993).
[CrossRef] [PubMed]

Close, J. D.

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

Coq, Y. L.

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

Cronin, A. D.

D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, "From Single- to Multiple-Photon Decoherence in an Atom Interferometer," Phys. Rev. Lett. 86, 2191-2195 (2001).
[CrossRef] [PubMed]

Cunningham, J. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
[CrossRef] [PubMed]

Davis, K. B.

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. v. Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms," Phys. Rev. Lett. 75, 3969-3973 (1995).
[CrossRef] [PubMed]

Delannoy, G.

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

Deng, L.

E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
[CrossRef] [PubMed]

Durfee, D. S.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Esslinger, T.

I. Bloch, M. Kohl, M. Greiner, T. W. Hansch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030,401 (2001).
[CrossRef]

Fauquembergue, M.

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

Figl, C.

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

Gerbier, F.

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

Gould, H.

J. G. Kalnins, J. M. Amini, and H. Gould, "Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet," Phys. Rev. A 72, 043,406 (2005).
[CrossRef]

Greiner, M.

I. Bloch, M. Kohl, M. Greiner, T. W. Hansch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030,401 (2001).
[CrossRef]

Guerin, W.

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

Hagley, E.W.

E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
[CrossRef] [PubMed]

Haine, S. A.

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

Hansch, T. W.

I. Bloch, M. Kohl, M. Greiner, T. W. Hansch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030,401 (2001).
[CrossRef]

Helmerson, K.

E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
[CrossRef] [PubMed]

Henkel, C.

C. Henkel, J. Schmiedmayer, C. Westbrook, and eds., "Special Issue - Atom chips: manipulating atoms and molecules with microfabricated structures," Eur. Phys. J. D 35(1), 1-2 (2005).
[CrossRef]

Hope, J. J.

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

Inouye, S.

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
[CrossRef]

Jeppesen, M.

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

Josse, V.

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

Kaenders, W. G.

W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
[CrossRef] [PubMed]

Kalnins, J. G.

J. G. Kalnins, J. M. Amini, and H. Gould, "Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet," Phys. Rev. A 72, 043,406 (2005).
[CrossRef]

Keller, C.

M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. v. d. Zouw, and A. Zeilinger, "Wave-particle duality of C60 molecules," Nature 401, 680-682 (1999).
[CrossRef]

Ketterle, W.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
[CrossRef]

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Kielpinski, D.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

Kishimoto, T.

M. Morinaga, M. Yasuda, T. Kishimoto, and F. Shimizu, "Holographic Manipulation of a Cold Atomic Beam," Phys. Rev. Lett. 77, 802-805 (1996).
[CrossRef] [PubMed]

Kohl, M.

I. Bloch, M. Kohl, M. Greiner, T. W. Hansch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030,401 (2001).
[CrossRef]

Kokorowski, D. A.

D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, "From Single- to Multiple-Photon Decoherence in an Atom Interferometer," Phys. Rev. Lett. 86, 2191-2195 (2001).
[CrossRef] [PubMed]

Kozuma, M.

E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
[CrossRef] [PubMed]

Kurn, D. M.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Le Coq, Y.

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

Leanhardt, A. E.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

Lison, F.

W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
[CrossRef] [PubMed]

MacCormick, C.

A. S. Arnold, C. MacCormick, and M. G. Boshier, "Diffraction-limited focusing of Bose-Einstein condensates," J. Phys. B 37, 485 (2004).
[CrossRef]

Majorana, E.

E. Majorana, "Orientated atoms in a variable magnetic field," Nuovo Cimento 9, 43-50 (1932).
[CrossRef]

McClelland, J. J.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, "Laser-focused atomic deposition," Science 262, 877-880 (1993).
[CrossRef] [PubMed]

Meschede, D.

W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
[CrossRef] [PubMed]

Mewes, M.-O.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. v. Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms," Phys. Rev. Lett. 75, 3969-3973 (1995).
[CrossRef] [PubMed]

Miesner, H.-J.

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
[CrossRef]

Mlynek, J.

C. S. Adams, M. Sigel, and J. Mlynek, "Atom optics," Phys. Reports 240, 143-210 (1994).
[CrossRef]

Morinaga, M.

M. Morinaga, M. Yasuda, T. Kishimoto, and F. Shimizu, "Holographic Manipulation of a Cold Atomic Beam," Phys. Rev. Lett. 77, 802-805 (1996).
[CrossRef] [PubMed]

Morrison, A. K.

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

Muller, I.

W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
[CrossRef] [PubMed]

Muniz, S. R.

D. S. Naik, S. R. Muniz, and C. Raman, "Metastable Bose-Einstein condensate in a linear potential," Phys. Rev. A 72, 051,606 (2005).
[CrossRef]

Naik, D. S.

D. S. Naik and C. Raman, "Optically plugged quadrupole trap for Bose-Einstein condensates," Phys. Rev. A 71, 033,617 (2005).
[CrossRef]

D. S. Naik, S. R. Muniz, and C. Raman, "Metastable Bose-Einstein condensate in a linear potential," Phys. Rev. A 72, 051,606 (2005).
[CrossRef]

Nairz, O.

M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. v. d. Zouw, and A. Zeilinger, "Wave-particle duality of C60 molecules," Nature 401, 680-682 (1999).
[CrossRef]

Palm, E. C.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, "Laser-focused atomic deposition," Science 262, 877-880 (1993).
[CrossRef] [PubMed]

Pasquini, T. A.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

Prentiss, M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
[CrossRef] [PubMed]

Pritchard, D. E.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, "From Single- to Multiple-Photon Decoherence in an Atom Interferometer," Phys. Rev. Lett. 86, 2191-2195 (2001).
[CrossRef] [PubMed]

Raman, C.

D. S. Naik and C. Raman, "Optically plugged quadrupole trap for Bose-Einstein condensates," Phys. Rev. A 71, 033,617 (2005).
[CrossRef]

D. S. Naik, S. R. Muniz, and C. Raman, "Metastable Bose-Einstein condensate in a linear potential," Phys. Rev. A 72, 051,606 (2005).
[CrossRef]

Rangwala, S. A.

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

Richard, S.

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

Richter, A.

W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
[CrossRef] [PubMed]

Riou, J. F.

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

Roati, G.

G. Roati, E. d. Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, "Atom Interferometry with Trapped Fermi Gases," Phys. Rev. Lett. 92, 230,402 (2004).
[CrossRef]

Roberts, T. D.

D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, "From Single- to Multiple-Photon Decoherence in an Atom Interferometer," Phys. Rev. Lett. 86, 2191-2195 (2001).
[CrossRef] [PubMed]

Robins, N. P.

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

Rolston, S. L.

E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
[CrossRef] [PubMed]

Saba, M.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

Schirotzek, A.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

Schmiedmayer, J.

C. Henkel, J. Schmiedmayer, C. Westbrook, and eds., "Special Issue - Atom chips: manipulating atoms and molecules with microfabricated structures," Eur. Phys. J. D 35(1), 1-2 (2005).
[CrossRef]

Scholten, R. E.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, "Laser-focused atomic deposition," Science 262, 877-880 (1993).
[CrossRef] [PubMed]

Shimizu, F.

M. Morinaga, M. Yasuda, T. Kishimoto, and F. Shimizu, "Holographic Manipulation of a Cold Atomic Beam," Phys. Rev. Lett. 77, 802-805 (1996).
[CrossRef] [PubMed]

Shin, Y.

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

Sigel, M.

C. S. Adams, M. Sigel, and J. Mlynek, "Atom optics," Phys. Reports 240, 143-210 (1994).
[CrossRef]

Stamper-Kurn, D. M.

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
[CrossRef]

Stenger, J.

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
[CrossRef]

Tennant, D. M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
[CrossRef] [PubMed]

Thywissen, J. H.

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

Timp, G.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
[CrossRef] [PubMed]

Townsend, C. G.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Vos-Andreae, J.

M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. v. d. Zouw, and A. Zeilinger, "Wave-particle duality of C60 molecules," Nature 401, 680-682 (1999).
[CrossRef]

Wen, J.

E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
[CrossRef] [PubMed]

Westbrook, C.

C. Henkel, J. Schmiedmayer, C. Westbrook, and eds., "Special Issue - Atom chips: manipulating atoms and molecules with microfabricated structures," Eur. Phys. J. D 35(1), 1-2 (2005).
[CrossRef]

Wynands, R.

W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
[CrossRef] [PubMed]

Yasuda, M.

M. Morinaga, M. Yasuda, T. Kishimoto, and F. Shimizu, "Holographic Manipulation of a Cold Atomic Beam," Phys. Rev. Lett. 77, 802-805 (1996).
[CrossRef] [PubMed]

Eur. Phys. J. D

C. Henkel, J. Schmiedmayer, C. Westbrook, and eds., "Special Issue - Atom chips: manipulating atoms and molecules with microfabricated structures," Eur. Phys. J. D 35(1), 1-2 (2005).
[CrossRef]

J. Phys. B

A. S. Arnold, C. MacCormick, and M. G. Boshier, "Diffraction-limited focusing of Bose-Einstein condensates," J. Phys. B 37, 485 (2004).
[CrossRef]

Nature

M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. v. d. Zouw, and A. Zeilinger, "Wave-particle duality of C60 molecules," Nature 401, 680-682 (1999).
[CrossRef]

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151-154 (1998).
[CrossRef]

Nuovo Cimento

E. Majorana, "Orientated atoms in a variable magnetic field," Nuovo Cimento 9, 43-50 (1932).
[CrossRef]

Phys. Reports

C. S. Adams, M. Sigel, and J. Mlynek, "Atom optics," Phys. Reports 240, 143-210 (1994).
[CrossRef]

Phys. Rev. A

J. G. Kalnins, J. M. Amini, and H. Gould, "Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet," Phys. Rev. A 72, 043,406 (2005).
[CrossRef]

D. S. Naik, S. R. Muniz, and C. Raman, "Metastable Bose-Einstein condensate in a linear potential," Phys. Rev. A 72, 051,606 (2005).
[CrossRef]

D. S. Naik and C. Raman, "Optically plugged quadrupole trap for Bose-Einstein condensates," Phys. Rev. A 71, 033,617 (2005).
[CrossRef]

W. G. Kaenders, F. Lison, I. Muller, A. Richter, R. Wynands, and D. Meschede, "Refractive components for magnetic atom optics," Phys. Rev. A 54, 5067 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

I. Bloch, M. Kohl, M. Greiner, T. W. Hansch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030,401 (2001).
[CrossRef]

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. v. Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms," Phys. Rev. Lett. 75, 3969-3973 (1995).
[CrossRef] [PubMed]

J. F. Riou, W. Guerin, Y. L. Coq, M. Fauquembergue, V. Josse, P. Bouyer, and A. Aspect, "Beam Quality of a Nonideal Atom Laser," Phys. Rev. Lett. 96, 070,404 (2006).
[CrossRef]

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Y. Le Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier, S. Richard, G. Delannoy, P. Bouyer, and A. Aspect, "Atom Laser Divergence," Phys. Rev. Lett. 87, 170,403 (2001).
[CrossRef]

G. Roati, E. d. Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, "Atom Interferometry with Trapped Fermi Gases," Phys. Rev. Lett. 92, 230,402 (2004).
[CrossRef]

N. P. Robins, C. Figl, S. A. Haine, A. K. Morrison, M. Jeppesen, J. J. Hope, and J. D. Close, "Achieving Peak Brightness in an Atom Laser," Phys. Rev. Lett. 96, 140,403 (2006).
[CrossRef]

D. A. Kokorowski, A. D. Cronin, T. D. Roberts, and D. E. Pritchard, "From Single- to Multiple-Photon Decoherence in an Atom Interferometer," Phys. Rev. Lett. 86, 2191-2195 (2001).
[CrossRef] [PubMed]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, "Using light as a lens for submicron, neutral-atom lithography," Phys. Rev. Lett. 69, 1636 (1992).
[CrossRef] [PubMed]

M. Morinaga, M. Yasuda, T. Kishimoto, and F. Shimizu, "Holographic Manipulation of a Cold Atomic Beam," Phys. Rev. Lett. 77, 802-805 (1996).
[CrossRef] [PubMed]

Quantum and Semiclassical Optics: J. Eur. Opt. Soc. Part B

"Special Issue on Atom Optics," Quantum and Semiclassical Optics: J. Eur. Opt. Soc. Part B 8, 495 (1996).

Science

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, "Laser-focused atomic deposition," Science 262, 877-880 (1993).
[CrossRef] [PubMed]

E.W. Hagley, L. Deng,M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, andW. D. Phillips, "AWell-Collimated Quasi-Continuous Atom Laser," Science 283, 1706-1709 (1999).
[CrossRef] [PubMed]

A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, "Cooling Bose-Einstein condensates below 500 picokelvin," Science 301(5639), 1513-1515 (2003).
[CrossRef]

Other

P. R. Berman, ed., Atom Interferometry (Academic Press, San Diego, 1997).

P. Meystre, Atom optics, Springer series on atomic, optical, and plasma physics; 33 (AIP Press/Springer, New York :, 2001).

L. Pitaevskii and S. Stringari, Bose-Einstein condensation, International Series of Monographs on Physics (Clarendon Press, Oxford, 2003).

Supplementary Material (2)

» Media 1: MOV (583 KB)     
» Media 2: MOV (581 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Artistic rendition of the operation of the atomic axicon. A condensate (wavefunction shown in black and white) is initially localized near the origin. The external potential is shown in false color. (a) At time t=0, the linear potential is turned off, and a blue-detuned optical plug is turned on. (b) For times t>0 the atoms rapidly “roll down” the potential hill, forming a ring-shaped density distribution that expands radially outwards in the x-y plane.

Fig. 2.
Fig. 2.

Far field pattern of a conical atom beam. (a) (583 KB) Movie of the ring expansion and (b) (582 KB) movie of ordinary BEC expansion. The frame size is 2.6 mm×2.6 mm. (c) Ring radius versus TOF and (d) velocity of expansion versus the peak AC Stark Shift, proportional to the laser intensity. The solid curve is a fit to a square root function arising from the energy conservation relation Eqn. 1 in the text.

Fig. 3.
Fig. 3.

Spatial distribution of the ring. Data were taken at the maximum plug AC Stark shift of kB ×6.5 µK.(a) Radial number density of atoms for TOF from 5 to 19 ms in increments of 2 ms, showing the outward radial evolution. (b) Spatial half-width at half-maximum (HWHM) for forward width Wf (solid circle) and backward widthWback (square). (c) Time evolution of a classical “wavepacket” simulation of our experiment, as described in the text. The probability density is shown for times 0, 5, 10, 15 and 20 ms, and confirms the temporal focusing observed in (b).

Fig. 4.
Fig. 4.

Side view of the expanding atomic distributions shown at 10 ms (top: a,b) and 15 ms (below: c,d) for both ring shaped expansions (left: a,c) as well as ordinary BEC expansion (right: b,d). Each image is 0.8 mm×2.2 mm.

Fig. 5.
Fig. 5.

Numerical simulation of ring shaped expansion. Computed density profiles in the ρ-z plane for (a) the initial Thomas-Fermi distribution and (b) at 1.3 ms, after the atoms have mostly traversed the region containing the plug. In (c) we show the velocity distribution of the wavefunction of (b) (solid black) as well as that obtained for a purely linear temporal evolution, i.e., by turning off the nonlinear term in the Gross-Pitaevskii equation during the expansion (dot-dashed red). For comparison, we also show the velocity distribution obtained by mean-field expansion without the plug (dashed blue). In (d) we examine the region near the velocity peak for the purely linear expansion at times 1.3 (dot-dashed red) and 1.8 ms (solid blue). For each curve, the velocity distribution is normalized to its peak value.

Tables (1)

Tables Icon

Table 1. Comparison of theoretical and experimental parameters for ring shaped expansion.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v f = 2 U 0 M e ρ 2 W 2 = 2 U 0 M [ 1 ρ 2 W 2 + O ( ρ 4 W 4 ) ]
i h ̄ t ψ ( ρ , z , t ) = ( h ̄ 2 2 m 2 + V ( ρ , z , t ) + N g ψ ( ρ , z , t ) 2 ) ψ ( ρ , z , t )
V ( r , t ) = { μ M B ' ρ ρ 2 + 4 z 2 , t < 0 U 0 exp ( 2 ρ 2 W 2 ) , t > 0

Metrics