Abstract

A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hubbin and L. Noethe, "What is adaptive optics?," Science 262, 1345-1484 (1993).
  2. H. Hofer, P. Artal, B. Singer, L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
    [CrossRef]
  3. E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
    [CrossRef]
  4. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye’s aberrations," Opt. Express 8, 631-643 (2001).
    [CrossRef] [PubMed]
  5. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express 14, 4552-4569 (2006).
    [CrossRef] [PubMed]
  6. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989).
    [CrossRef] [PubMed]
  7. A. Roorda, F. Romero-Borja, W. J. DonnellyIII, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    [PubMed]
  8. Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscopy," Opt. Lett. 31, 1268-1270 (2006).
    [CrossRef] [PubMed]
  9. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  10. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics spectral optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
    [CrossRef] [PubMed]
  11. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
    [CrossRef] [PubMed]
  12. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
    [CrossRef] [PubMed]
  13. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
    [CrossRef] [PubMed]
  14. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surgery 18, 634-638 (2002).
  15. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. of Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.
  16. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
    [CrossRef]
  17. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004).
    [CrossRef] [PubMed]
  18. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
    [CrossRef]
  19. K. M. Hampson, C. Paterson, C. Dainty, and E. A. H. Mallen, "Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control," J. Opt. Soc. Am. A 23, 1082-1088 (2006).
    [CrossRef]
  20. B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction" J. Opt. Soc. Am A 19, 833-839 (2002).
    [CrossRef]
  21. G. Rousset, "Wavefront sensing", NATO ASI Series Vol. C423, 115-137, Adaptive Optics for Astronomy, D. Alloin J.-M. Mariotti, Eds., (Kluwer Academic Publishers, 1994).
  22. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949- 1955 (1994).
    [CrossRef]
  23. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17,1388-1398 (2000).
    [CrossRef]
  24. F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
    [CrossRef]
  25. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
    [CrossRef] [PubMed]
  26. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A. 14, 2884-2892 (1997).
    [CrossRef]
  27. E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005).
    [CrossRef] [PubMed]
  28. G. Vdovin and P. M. Sarro, "Flexible mirror micromachined en silicon," Appl. Opt. 29, 2968-2972 (1995).
    [CrossRef]
  29. L. Zhu, P-C. Sun, and Y. Fainman, "Aberration-free dynamic focusing with a multichannel micromachined membrane deformable mirror," Appl. Opt. 38, 5350-5354 (1999).
    [CrossRef]
  30. D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
    [CrossRef]
  31. C. Paterson, I Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000).
    [CrossRef] [PubMed]
  32. E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003).
    [CrossRef] [PubMed]
  33. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye, " Opt. Lett. 27, 1537-1539 (2002).
    [CrossRef]
  34. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
    [CrossRef] [PubMed]
  35. American National Standard Institute, American National Standard for Safe Use of Lasers, ANSI Z 136-1 (2000).
  36. C. Boyer, V. Michau, and G. Rousset, "Adaptive optics: interaction matrix measurements and real time control algorithms for the COME ON project," in Amplitude and Intensity Spatial Interferometry, Proc. SPIE 1237, 406-424 (1990).
  37. W. H. Press, S. A. Tekolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, 1992).
  38. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
    [CrossRef] [PubMed]
  39. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
    [CrossRef] [PubMed]
  40. L. N. Thibos, R. A. Applegate, J. Schwiegerling, R. H. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surgery 18, 652-660 (2002).
  41. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, "Statistical description of wave-front aberration in the human eye," Opt. Lett. 27, 37-39 (2002).
    [CrossRef]
  42. J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  43. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vis. Res. 42, 1611-1617 (2002).
    [CrossRef] [PubMed]
  44. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
    [CrossRef]
  45. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 1-9 (2002).
    [CrossRef]
  46. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  47. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  48. W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
    [CrossRef] [PubMed]
  49. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  50. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
    [CrossRef] [PubMed]
  51. E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
    [CrossRef] [PubMed]
  52. E. S. Claflin and N. Bareket, "Configuring an electrostatic membrane mirror by least square fitting with analytically derived influence functions," J. Opt. Soc. Am. A 3, 1833-1839 (1986).
    [CrossRef]

2006

2005

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics spectral optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
[CrossRef]

E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005).
[CrossRef] [PubMed]

2004

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. of Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

2003

2002

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye, " Opt. Lett. 27, 1537-1539 (2002).
[CrossRef]

A. Roorda, F. Romero-Borja, W. J. DonnellyIII, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surgery 18, 634-638 (2002).

B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction" J. Opt. Soc. Am A 19, 833-839 (2002).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. Schwiegerling, R. H. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surgery 18, 652-660 (2002).

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, "Statistical description of wave-front aberration in the human eye," Opt. Lett. 27, 37-39 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vis. Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 1-9 (2002).
[CrossRef]

2001

2000

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

C. Paterson, I Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17,1388-1398 (2000).
[CrossRef]

1999

1998

1997

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A. 14, 2884-2892 (1997).
[CrossRef]

1995

G. Vdovin and P. M. Sarro, "Flexible mirror micromachined en silicon," Appl. Opt. 29, 2968-2972 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1994

1993

N. Hubbin and L. Noethe, "What is adaptive optics?," Science 262, 1345-1484 (1993).

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1990

C. Boyer, V. Michau, and G. Rousset, "Adaptive optics: interaction matrix measurements and real time control algorithms for the COME ON project," in Amplitude and Intensity Spatial Interferometry, Proc. SPIE 1237, 406-424 (1990).

1989

1986

Ahnelt, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Ahnelt, P. K.

Anger, E. M.

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. Schwiegerling, R. H. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surgery 18, 652-660 (2002).

Aragón, L.

Artal, P.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
[CrossRef]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. of Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003).
[CrossRef] [PubMed]

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, "Statistical description of wave-front aberration in the human eye," Opt. Lett. 27, 37-39 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vis. Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surgery 18, 634-638 (2002).

H. Hofer, P. Artal, B. Singer, L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17,1388-1398 (2000).
[CrossRef]

F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
[CrossRef]

Bareket, N.

Benito, A.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vis. Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Bierden, P.

Bille, J. F.

Boppart, S. A.

Bower, B.

Boyer, C.

C. Boyer, V. Michau, and G. Rousset, "Adaptive optics: interaction matrix measurements and real time control algorithms for the COME ON project," in Amplitude and Intensity Spatial Interferometry, Proc. SPIE 1237, 406-424 (1990).

Bradley, A.

Browne, S.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Cagigal, M. P.

Campbell, M. C. W.

Canales, V. F.

Castejón-Mochón, J. F.

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, "Statistical description of wave-front aberration in the human eye," Opt. Lett. 27, 37-39 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vis. Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, L.

Cheng, X.

Choi, S.

Claflin, E. S.

Cowey, A.

Cox, I.

Cox, I. G.

Dainty, C.

Dainty, J. C.

Dalimier, E.

Dayton, D.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Decker, K. E.

B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction" J. Opt. Soc. Am A 19, 833-839 (2002).
[CrossRef]

Doble, N.

Donnelly, W. J.

Dreher, A. W.

Drexler, W.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fainman, Y.

Fercher, A. F.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fernández, E. J.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
[CrossRef]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. of Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003).
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surgery 18, 634-638 (2002).

E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gallegos, J.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Gao, W.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

Goelz, S.

Gonglewski, J.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grimm, B.

Guirao, A.

Hampson, K. M.

Hebert, T. J.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hofer, H.

Hong, X.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hubbin, N.

N. Hubbin and L. Noethe, "What is adaptive optics?," Science 262, 1345-1484 (1993).

Iglesias, I.

Ippen, E. P.

Izatt, J.

Jones, S.

Jonnal, R. S.

Jung, G.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Kruger, P. B.

Laut, S.

Le, T.

Leitgeb, R.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Li, X. D.

Liang, J.

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A. 14, 2884-2892 (1997).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949- 1955 (1994).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

López-Gil, N.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vis. Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, "Statistical description of wave-front aberration in the human eye," Opt. Lett. 27, 37-39 (2002).
[CrossRef]

Mallen, E. A. H.

Manzanera, S.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. of Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surgery 18, 634-638 (2002).

McDermott, S.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Michau, V.

C. Boyer, V. Michau, and G. Rousset, "Adaptive optics: interaction matrix measurements and real time control algorithms for the COME ON project," in Amplitude and Intensity Spatial Interferometry, Proc. SPIE 1237, 406-424 (1990).

Miller, D. T.

Morgan, J. E.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Munro, I

Noethe, L.

N. Hubbin and L. Noethe, "What is adaptive optics?," Science 262, 1345-1484 (1993).

Norrby, S.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

Olivier, S.

Paterson, C.

Piers, P.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surgery 18, 634-638 (2002).

Pitris, C.

Poonja, S.

Porter, J.

Povazay, B.

Považay, B.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Prieto, P. M.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, "Statistical description of wave-front aberration in the human eye," Opt. Lett. 27, 37-39 (2002).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17,1388-1398 (2000).
[CrossRef]

F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Qu, J.

Queener, H.

Restaino, S.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Rha, J.

Rogers, S.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Romero-Borja, F.

Roorda, A.

Rousset, G.

C. Boyer, V. Michau, and G. Rousset, "Adaptive optics: interaction matrix measurements and real time control algorithms for the COME ON project," in Amplitude and Intensity Spatial Interferometry, Proc. SPIE 1237, 406-424 (1990).

Sarro, P. M.

G. Vdovin and P. M. Sarro, "Flexible mirror micromachined en silicon," Appl. Opt. 29, 2968-2972 (1995).
[CrossRef]

Sattmann, H.

Schubert, C.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schwiegerling, J.

L. N. Thibos, R. A. Applegate, J. Schwiegerling, R. H. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surgery 18, 652-660 (2002).

Shilko, M.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Singer, B.

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stur, M.

Sun, P-C.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tempea, G.

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. Schwiegerling, R. H. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surgery 18, 652-660 (2002).

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

Thorn, K. E.

Unterhuber, A.

Vaidyanathan, M.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Vargas-Martín, F.

Vdovin, G.

G. Vdovin and P. M. Sarro, "Flexible mirror micromachined en silicon," Appl. Opt. 29, 2968-2972 (1995).
[CrossRef]

Webb, R. H.

L. N. Thibos, R. A. Applegate, J. Schwiegerling, R. H. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surgery 18, 652-660 (2002).

Weinreb, R. N.

Werner, J.

Werner, J. S.

Williams, D. R.

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. of Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 1-9 (2002).
[CrossRef]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye, " Opt. Lett. 27, 1537-1539 (2002).
[CrossRef]

J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye’s aberrations," Opt. Express 8, 631-643 (2001).
[CrossRef] [PubMed]

H. Hofer, P. Artal, B. Singer, L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A. 14, 2884-2892 (1997).
[CrossRef]

Wilson, B. J.

B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction" J. Opt. Soc. Am A 19, 833-839 (2002).
[CrossRef]

Yakovlev, V.

Yamauchi, Y.

Yoon, G.

Yoon, G. Y.

Zawadzki, R.

Zawadzki, R. J.

Zhang, Y.

Zhao, M.

Zhu, L.

Appl. Opt.

Invest. Ophthal. Vis. Sci.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt.

W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

J. of Vision

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. of Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.

J. Opt. Soc. Am A

B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction" J. Opt. Soc. Am A 19, 833-839 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949- 1955 (1994).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17,1388-1398 (2000).
[CrossRef]

F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
[CrossRef]

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

K. M. Hampson, C. Paterson, C. Dainty, and E. A. H. Mallen, "Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control," J. Opt. Soc. Am. A 23, 1082-1088 (2006).
[CrossRef]

H. Hofer, P. Artal, B. Singer, L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 1-9 (2002).
[CrossRef]

J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

E. S. Claflin and N. Bareket, "Configuring an electrostatic membrane mirror by least square fitting with analytically derived influence functions," J. Opt. Soc. Am. A 3, 1833-1839 (1986).
[CrossRef]

J. Opt. Soc. Am. A.

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A. 14, 2884-2892 (1997).
[CrossRef]

J. Opt. Soc. of Am. A

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
[CrossRef]

J. Refract. Surgery

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surgery 18, 634-638 (2002).

L. N. Thibos, R. A. Applegate, J. Schwiegerling, R. H. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surgery 18, 652-660 (2002).

Nature Medicine

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Opt. Express

C. Paterson, I Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003).
[CrossRef] [PubMed]

E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics spectral optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
[CrossRef] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye’s aberrations," Opt. Express 8, 631-643 (2001).
[CrossRef] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express 14, 4552-4569 (2006).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. DonnellyIII, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

Opt. Lett.

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, "Statistical description of wave-front aberration in the human eye," Opt. Lett. 27, 37-39 (2002).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscopy," Opt. Lett. 31, 1268-1270 (2006).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
[CrossRef]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye, " Opt. Lett. 27, 1537-1539 (2002).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
[CrossRef] [PubMed]

Proc. SPIE

C. Boyer, V. Michau, and G. Rousset, "Adaptive optics: interaction matrix measurements and real time control algorithms for the COME ON project," in Amplitude and Intensity Spatial Interferometry, Proc. SPIE 1237, 406-424 (1990).

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

N. Hubbin and L. Noethe, "What is adaptive optics?," Science 262, 1345-1484 (1993).

Vis. Res.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vis. Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Other

W. H. Press, S. A. Tekolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, 1992).

American National Standard Institute, American National Standard for Safe Use of Lasers, ANSI Z 136-1 (2000).

G. Rousset, "Wavefront sensing", NATO ASI Series Vol. C423, 115-137, Adaptive Optics for Astronomy, D. Alloin J.-M. Mariotti, Eds., (Kluwer Academic Publishers, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Picture of the adaptive optics system for the human eye. Planes, optically conjugated are indicated with dotted lines.

Fig. 2.
Fig. 2.

(A) Scheme of the Mirao 52. Magnets are fixed under the reflecting deformable membrane. A corresponding set of coils, creates magnetic fields pushing or pulling the magnets, depending of the voltages applied to the coils. (B) Distribution of the actuators underneath the deformable membrane in the magnetic mirror. Dashed line shows the mirrored area (15 mm diameter), while the dotted circle, corresponding to 11.89 mm diameter, is the selected area for characterizing the deformable mirror.

Fig. 3.
Fig. 3.

Selected influence functions of the deformable membrane. Right column shows the profiles, obtained by applying different voltages, of the mirror extracted from the diagonal of the corresponding wavefront maps.

Fig. 4.
Fig. 4.

Peak-valley values obtained from some selected influence functions as a function of the applied voltage. Dashed lines are the corresponding linear fits performed over each set of data. Estimated linear equations and regression coefficients are also displayed in the graph.

Fig. 5.
Fig. 5.

Selected Zernike polynomials generated by the deformable mirror measured by the Hartmann-Shack wavefront sensor. In all cases, 1 µm is programmed for the production of the polynomial. The error, being the difference between the intended coefficient and the measured RMS, is also presented over each aberration map.

Fig. 6.
Fig. 6.

Mode coupling and fidelity of the magnetic deformable mirror in the generation of some representative Zernike polynomials. Polynomials up to the 5th order are shown in all cases. Dashed lines correspond to the ideal response.

Fig. 7.
Fig. 7.

Experimental ranges of Zernike polynomials production up to the 5th order in the deformable mirror, allowing an error below 5 % in the fidelity of the generation. Dark blue bars correspond to absolute average values of Zernike polynomials found in keratoconic eyes (adapted from Guirao et al., 2002) [45].

Fig. 8.
Fig. 8.

Left panel: average longitudinal chromatic aberration obtained from 4 subjects, using a Gaussian spectrum 140 nm FWHM centered at 800 nm, with and without the achromatizing lens (with AL and natural respectively). Right panel: effect of the ocular chromatic aberration over the modulation transfer function in absence of monochromatic aberrations for a pupil of 6.6 mm diameter. Red color indicates in the plot the case affected by chromatic aberration (CA). Polychromatic point-spread functions with and without ocular chromatic aberration are presented.

Fig. 9.
Fig. 9.

Temporal evolution of the Strehl ratio from 5 different eyes during closed-loop aberration correction in a pupil of 6.6 mm diameter.

Fig. 10.
Fig. 10.

Left column: initial aberrations and associated polychromatic point-spread functions obtained from 4 real eyes. Right column: best corrected wavefront achieved for each case during the first 1.25 seconds of closed-loop aberration correction. Peak-valley and RMS in microns for every aberration map are displayed at the left and bottom of the maps respectively. Strehl ratios are also included below every point-spread function.

Fig. 11.
Fig. 11.

Aberration correction for subject S3. From left to the right the aberration maps show the initial aberrations, the initial aberrations without defocus and the corrected case respectively. The associated polychromatic point-spread functions are displayed below every aberration map together with the Strehl ratio. The bars diagram shows the Zernike coefficients in the natural case, in blue color, and after aberration correction, in red.

Metrics