Abstract

The spectral and the temporal behavior of high-intensity negatively chirped femtosecond pulses in normally dispersive media at different input parameters are experimentally studied. The spectrum of the pulse is reshaped due to strong self-actions. The pulse is self-compressed, instead of broadening, accompanied with the spectral FWHM bandwidth shortened. Steepening of the leading edge of the pulse and spectral red-shift are observed in the experiment. The numerical simulation shows that the result is in agreement with the experimental result.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A.Braun, G.Korn, X.Liu, D.Du, J.Squier, and G.Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995)
    [CrossRef] [PubMed]
  2. A.T.Ryan and G.P.Agrawal, "Pulse compression and spatial phase modulation in normally dispersive nonlinear Kerr media,"Opt. Lett. 20, 306-308 (1995)
    [CrossRef] [PubMed]
  3. E.T.J.Nibbering, P.F.Curley, G.Grillon, B.S.Prade, M.A.Franco, F.Salin, and A.Mysyrowicz, "Conical emission from self-guided femtosecond pulse in air," Opt. Lett. 21, 62-64(1996)
    [CrossRef] [PubMed]
  4. J. K. Ranka, R.W. Schirmer, and A. L. Gaeta, "Observation of pulses splitting in nonlinear dispersive media," Phys. Rev. Lett. 77, 3783-3786 (1996)
    [CrossRef] [PubMed]
  5. S.A.Diddams, H.K.Eaton, A.A.Zozulya, and T.S.Clement, "Characterizing the nonlinear propagation of femtosecond pulses in bulk media," IEEE J. Sel. Top. Quantum Electron. 4, 306-316 (1998)
    [CrossRef]
  6. A.A.Zozulya, "Propagation dynamics of intense femtosecond pulse: multiple splittings, coalescence, and continuum generation," Phys. Rev. Lett. 82, 1430-1433 (1999)
    [CrossRef]
  7. J. K. Ranka and A. L. Gaeta, "Breakdown of the slowlyvarying envelope approximation in the self-focusing of ultrashortpulses," Opt. Lett. 23, 534-536 (1998)
    [CrossRef]
  8. A.Brodeur and S.L.Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999)
    [CrossRef]
  9. A. L. Gaeta, "Catastrophic collapse of ultra short pulses," Phys. Rev. Lett. 84, 3582-3585 (2000)
    [CrossRef] [PubMed]
  10. S. Tzortzakis, L.Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, "Self-guided propagation of ultrashort IR laser pulses in fused silica," Phys. Rev. Lett. 87, 213902-1-4 (2001)
    [CrossRef] [PubMed]
  11. Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, "Filamentation and temporal reshaping of a femtosecond pulse in fused silica," Phys. Rev. A 68, 063820-1-8 (2003)
    [CrossRef]
  12. H.Yang, J.Zhang, J.Zhang, L.Z.Zhao, Y.J.Li, H.Teng, Y.T.Li, Z.H.Wang, Z.L.Chen, Z.Y.Wei, J.X.Ma, M.Yu, and Z.M.Sheng, "Third-order harmonic generation by self-guided femtosecond pulses in air," Phys. Rev. E 67, 015401 (2003)
    [CrossRef]
  13. S. Henz and J. Herrmann, "Self-channeling and pulse shortening of femtosecond pulses in multiphoton-ionized dispersive dielectric solids," Phys. Rev. A 59, 2528-2531 (1999)
    [CrossRef]
  14. I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, "Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation," Phys. Rev. Lett. 84, 3847-3850 (2000)
    [CrossRef] [PubMed]
  15. O.Shorokhov, A.Pukhov, and I.Kostyukov, "Self-compression of laser pulses in plasma," Phys. Rev. Lett. 91, 265002-1 (2003)
    [CrossRef]
  16. N.L.Wagner, E.A.Gibson, T.Popmintchev, I.P.Christov, M.M.Murnane, and H.C.Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902-1 (2004)
    [CrossRef] [PubMed]
  17. A.Couairon, M.Franco, A. Mysyrowicz, J. Biegert, and U. Keller, "Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient," Opt. Lett. 30, 2657-2659 (2005)
    [CrossRef] [PubMed]
  18. S.A.Planas, N.L.Pires Mansur, C.H.Brito Cruz, and H.L.Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt. Lett. 18, 699-701 (1993)
    [CrossRef] [PubMed]
  19. M.Oberthaler and R.A.HÖpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fiber," Appl. Phys. Lett. 63, 1017-1019 (1993)
    [CrossRef]
  20. B.R.Washburn, J.A.Buck, and S.E. Ralph, "Transform-limited spectral compression due to self-phase modulation in fibers," Opt. Lett. 25, 445-447 (2000)
    [CrossRef]
  21. I.Alexeev, A.Ting, D.F.Gordon, E.Briscope, J.R.Penano, R.F.Hubbard, and P.Sprangle, "Longitudinal compression of short laser pulses in air," Appl. Phys. Lett. 84, 4080-4082 (2004)
    [CrossRef]
  22. R.Nuter, S.Skupin, and Luc Bergé, "Chirp-induced dynamics of femtosecond filaments in air," Opt. Lett. 30, 917-919 (2005)
    [CrossRef] [PubMed]
  23. A.Couairon, "Dynamics of femtosecond filamentation from saturation of self-focusing laser pulses," Phys. Rev. A 68, 015801-1 (2003)
    [CrossRef]
  24. G. P.Agrawal, "Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers," Opt. Lett. 15, 224-226 (1990)
    [CrossRef] [PubMed]
  25. J. S. Liu, H. Schroeder, S. L. Chin, W. Yu, R. Li, and Z. Xu, "Space-frequency coupling, conical waves, and small scale filamentation in water," Phys. Rev. A 72, 053817-1 (2005)
    [CrossRef]

Appl. Phys. Lett. (2)

M.Oberthaler and R.A.HÖpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fiber," Appl. Phys. Lett. 63, 1017-1019 (1993)
[CrossRef]

I.Alexeev, A.Ting, D.F.Gordon, E.Briscope, J.R.Penano, R.F.Hubbard, and P.Sprangle, "Longitudinal compression of short laser pulses in air," Appl. Phys. Lett. 84, 4080-4082 (2004)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S.A.Diddams, H.K.Eaton, A.A.Zozulya, and T.S.Clement, "Characterizing the nonlinear propagation of femtosecond pulses in bulk media," IEEE J. Sel. Top. Quantum Electron. 4, 306-316 (1998)
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (9)

A.Braun, G.Korn, X.Liu, D.Du, J.Squier, and G.Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995)
[CrossRef] [PubMed]

A.T.Ryan and G.P.Agrawal, "Pulse compression and spatial phase modulation in normally dispersive nonlinear Kerr media,"Opt. Lett. 20, 306-308 (1995)
[CrossRef] [PubMed]

E.T.J.Nibbering, P.F.Curley, G.Grillon, B.S.Prade, M.A.Franco, F.Salin, and A.Mysyrowicz, "Conical emission from self-guided femtosecond pulse in air," Opt. Lett. 21, 62-64(1996)
[CrossRef] [PubMed]

A.Couairon, M.Franco, A. Mysyrowicz, J. Biegert, and U. Keller, "Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient," Opt. Lett. 30, 2657-2659 (2005)
[CrossRef] [PubMed]

S.A.Planas, N.L.Pires Mansur, C.H.Brito Cruz, and H.L.Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt. Lett. 18, 699-701 (1993)
[CrossRef] [PubMed]

R.Nuter, S.Skupin, and Luc Bergé, "Chirp-induced dynamics of femtosecond filaments in air," Opt. Lett. 30, 917-919 (2005)
[CrossRef] [PubMed]

B.R.Washburn, J.A.Buck, and S.E. Ralph, "Transform-limited spectral compression due to self-phase modulation in fibers," Opt. Lett. 25, 445-447 (2000)
[CrossRef]

G. P.Agrawal, "Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers," Opt. Lett. 15, 224-226 (1990)
[CrossRef] [PubMed]

J. K. Ranka and A. L. Gaeta, "Breakdown of the slowlyvarying envelope approximation in the self-focusing of ultrashortpulses," Opt. Lett. 23, 534-536 (1998)
[CrossRef]

Phys. Rev. A (4)

J. S. Liu, H. Schroeder, S. L. Chin, W. Yu, R. Li, and Z. Xu, "Space-frequency coupling, conical waves, and small scale filamentation in water," Phys. Rev. A 72, 053817-1 (2005)
[CrossRef]

A.Couairon, "Dynamics of femtosecond filamentation from saturation of self-focusing laser pulses," Phys. Rev. A 68, 015801-1 (2003)
[CrossRef]

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, "Filamentation and temporal reshaping of a femtosecond pulse in fused silica," Phys. Rev. A 68, 063820-1-8 (2003)
[CrossRef]

S. Henz and J. Herrmann, "Self-channeling and pulse shortening of femtosecond pulses in multiphoton-ionized dispersive dielectric solids," Phys. Rev. A 59, 2528-2531 (1999)
[CrossRef]

Phys. Rev. E (1)

H.Yang, J.Zhang, J.Zhang, L.Z.Zhao, Y.J.Li, H.Teng, Y.T.Li, Z.H.Wang, Z.L.Chen, Z.Y.Wei, J.X.Ma, M.Yu, and Z.M.Sheng, "Third-order harmonic generation by self-guided femtosecond pulses in air," Phys. Rev. E 67, 015401 (2003)
[CrossRef]

Phys. Rev. Lett. (7)

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, "Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation," Phys. Rev. Lett. 84, 3847-3850 (2000)
[CrossRef] [PubMed]

O.Shorokhov, A.Pukhov, and I.Kostyukov, "Self-compression of laser pulses in plasma," Phys. Rev. Lett. 91, 265002-1 (2003)
[CrossRef]

N.L.Wagner, E.A.Gibson, T.Popmintchev, I.P.Christov, M.M.Murnane, and H.C.Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902-1 (2004)
[CrossRef] [PubMed]

J. K. Ranka, R.W. Schirmer, and A. L. Gaeta, "Observation of pulses splitting in nonlinear dispersive media," Phys. Rev. Lett. 77, 3783-3786 (1996)
[CrossRef] [PubMed]

A. L. Gaeta, "Catastrophic collapse of ultra short pulses," Phys. Rev. Lett. 84, 3582-3585 (2000)
[CrossRef] [PubMed]

S. Tzortzakis, L.Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, "Self-guided propagation of ultrashort IR laser pulses in fused silica," Phys. Rev. Lett. 87, 213902-1-4 (2001)
[CrossRef] [PubMed]

A.A.Zozulya, "Propagation dynamics of intense femtosecond pulse: multiple splittings, coalescence, and continuum generation," Phys. Rev. Lett. 82, 1430-1433 (1999)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. B.S.: beam splitter.

Fig. 2.
Fig. 2.

Measured evolution of the spectra of the transmitted pulse after focusing in air as the input pulse energy increases from 0.05mJ to 0.30mJ. Origin: the input pulse without chirp.

Fig. 3.
Fig. 3.

Measured evolution of the spectral and the temporal profile of the transmitted pulse: (a)the spectral (b)the temporal profile after focus in air, and (c)the spectral (d) the temporal profile after the glass as the input pulse energy increases from 0.10mJ to 0.30mJ. Origin means the input pulse without chirp.

Fig. 4.
Fig. 4.

Measured evolution of the spectrum on logarithm scale(solid line g: glass, dashed line a: air, the number before it is the input pulse energy) of the transmitted pulse as the input pulse energy increase(a). The simulation of the spectrum(b) and temporal profile(c) of the negatively chirped pulse after the BK7 glass as a function of intensity. The intensity of P1, P2, and P3 is about 8.78×1011 W/cm 2, 1.26×1012 W/cm 2, and 1.72×1012 W/cm 2, respectively. Origin means the input pulse without chirp.

Fig. 5.
Fig. 5.

Measured (solid line) temporal profile (a) spectrum and spectral phase (a1) of the pulse after glass with 0.30mJ input. The inset in (a) is the cross section intensity distribution of the laser beam after glass, the dotted line(red) in (a) is the retrieved temporal profile corresponding to the measured spectrum and spectral phase, the dashed line(blue) in (a) is the transform-limited(TL) pulse(17.3fs), and the dashed line in (a1) is the Lorentz fit of the measured spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z E ̂ ( r , z , ω ) = ( i 2 k ( ω ) 2 + ik ( ω ) ) E ̂ ( r , z , ω ) + i ω 2 P ̂ NL ( r , z , ω ) 2 k ( ω ) c 2 ε 0 ω J ̂ f ( r , z , ω ) 2 k ( ω ) c 2 ε 0

Metrics