Abstract

We have generated femtosecond pulses with a peak power as high as 0.7 GW at the repetition rate of 100 kHz from a downchirped-pulse amplification (DPA) Ti:sapphire laser. For the high-energy amplification with high repetition rate, we employ a regenerative amplifier, acousto-optically switched and pumped by a Q-switched green laser. The DPA-based dispersion control is achieved up to the third-order term by use of a prism-grating stretcher and a glass compressor. We have obtained 28 μJ, 39 fs laser pulses with a compression efficiency of 95 %. Temporal and spatial characteristics of the laser pulses are investigated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. P. J. Barty, C. L. Gordon III, and B. E. Lemoff, "Multiterawatt 30-fs Ti:sapphire laser system," Opt. Lett. 19, 1442 (1994).
    [CrossRef] [PubMed]
  2. S. Backus, J. Peatross, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, "Ti:sapphire amplifier producing millijoule-level 21-fs pulses at 1 kHz," Opt. Lett. 20, 2000 (1995).
    [CrossRef] [PubMed]
  3. N. Zhavoronkov and G. Korn, "Regenerative amplification of femtosecond laser pulses in Ti:sapphire at multikilohertz repetition rates," Opt. Lett. 29, 198 (2004).
    [CrossRef] [PubMed]
  4. T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation" Opt. Lett. 17, 1009 (1992).
    [CrossRef] [PubMed]
  5. D. Nickel, C. Stolzenburg, A. Giesen, and F. Butze, "Ultrafast thin-disk Yb:KY(WO4)2 regeneratvie amplifier with a 200-kHz repetition rate," Opt. Lett. 29 2764 (2004).
    [CrossRef] [PubMed]
  6. N. Zhavoronkov, H. Maekawa, H. Okuno, and K. Tominaga, "All-solid-state femtosecond multi-kilohertz laser system based on a new cavity-dumped oscillator design," J. Opt. Soc. Am. B 22, 567 (2005).
    [CrossRef]
  7. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 55, 447 (1985).
    [CrossRef]
  8. See the data sheet of RegA series of Coherent Incorporation (<a href="http://www.coherentinc.com">http://www.coherentinc.com</a>).
  9. J.-K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, "Chirped-pulse amplification of 85-fs pulses at 250 kHz with third-order dispersion compensation by use of holographic transmission gratings," Opt. Lett. 19, 1550 (1994).
    [CrossRef] [PubMed]
  10. F. Lindner, G. G. Paulus, F. Grasbon, A. Dreischuh, and H.Walther, "Dispersion control in a 100-kHz-repetitionrate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465 (2002).
    [CrossRef]
  11. F. Lindner, W. Stremme, M. G. Schatzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Struder, "High-order harmonic generation at a repetition rate of 100 kHz," Phys. Rev. A 68, 013814 (2003).
    [CrossRef]
  12. D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, and S. Backus, "11-W average power Ti:sapphire amplifier system using downchirped pulse amplification," Opt. Lett. 29, 2665 (2004).
    [CrossRef] [PubMed]
  13. M. Kakehata, H. Takada, Y. Kobayashi, and K. Torizuka, "Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies," Opt. Express 12, 2070 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2070">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2070</a>.
    [CrossRef] [PubMed]
  14. Y. S. Lee, J. H. Sung, C. H. Nam, T. J. Yu, and K.-H. Hong, "Novel method for carrier-envelope-phase stabilization of femtosecond laser pulses," Opt. Express 13, 2969 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2969">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2969</a>.
    [CrossRef] [PubMed]
  15. K.-H. Hong, S. Kostritsa, T. J. Yu, J. H. Sung, Y.-C. Noh, D.-K. Ko, and J. Lee, "Downchirped regenerative amplification of femtosecond laser pulses at 100 kHz repetition rate," UFO/HFSW 2005 (Nara, Japan, Sept. 25?30, 2005) F2-3.
  16. L. M. Frantz and J. S. Nodvick, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346 (1963).
    [CrossRef]
  17. T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, "Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry," Rev. Sci. Instrum. 75, 2266 (2004).
    [CrossRef]

IEEE J. Quantum Electron. (1)

F. Lindner, G. G. Paulus, F. Grasbon, A. Dreischuh, and H.Walther, "Dispersion control in a 100-kHz-repetitionrate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465 (2002).
[CrossRef]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvick, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 55, 447 (1985).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. A (1)

F. Lindner, W. Stremme, M. G. Schatzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Struder, "High-order harmonic generation at a repetition rate of 100 kHz," Phys. Rev. A 68, 013814 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, "Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry," Rev. Sci. Instrum. 75, 2266 (2004).
[CrossRef]

UFO/HFSW 2005, Nara, Japan (1)

K.-H. Hong, S. Kostritsa, T. J. Yu, J. H. Sung, Y.-C. Noh, D.-K. Ko, and J. Lee, "Downchirped regenerative amplification of femtosecond laser pulses at 100 kHz repetition rate," UFO/HFSW 2005 (Nara, Japan, Sept. 25?30, 2005) F2-3.

Other (1)

See the data sheet of RegA series of Coherent Incorporation (<a href="http://www.coherentinc.com">http://www.coherentinc.com</a>).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of 100 kHz DPA Ti:sapphire amplification system. Regenerative amplifier (a), pulse stretcher (b), and pulse compressor (c). L, lens; DMs; dichroic mirrors; Ms, dielectric mirrors; RM, re-focusing mirror; FM, folding mirror; CMs, chirped mirrors; FI, Faraday isolator; PBS, polarizing beam splitter; Ti:S, Ti:sapphire crystal.

Fig. 2.
Fig. 2.

Synchronization scheme for the regenerative amplifier.

Fig. 3.
Fig. 3.

Optical spectra of the pulses from master oscillator and after stretcher.

Fig. 4.
Fig. 4.

Amplified spectrum with spectral phase (a) and compressed pulse profile with temporal phase (b) characterized using FROG technique. Measured and calculated curves of spectral phase are represented as square dots and solid line in (a), respectively.

Fig. 5.
Fig. 5.

Spatial beam profile (a) and M2 value measurement (b).

Tables (1)

Tables Icon

Table 1. Dispersion calculation for the design of a DPA laser system.

Metrics