Abstract

The symmetry of metal nanostructures may be broken by their overall features or small-scale defects. To separate the roles of these two mechanisms in chiral symmetry breaking, we prepare gold nanostructures with chirality occurring on different levels. Linear optical measurements reveal small chiral signatures, whereas the chiral responses from second-harmonic generation are enormous. The responses of all structures are remarkably similar, suggesting that uncontrollable defects play an important role in symmetry breaking.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. G. Craighead and G. A. Niklasson, "Characterization and optical properties of arrays of small gold particles," Appl. Phys. Lett. 44, 1134-1136 (1984).
    [CrossRef]
  2. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, "Optical dichroism of lithographically designed silver nanoparticle films," Opt. Lett. 21, 1099-1101 (1996).
    [CrossRef] [PubMed]
  3. H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, and J. Turunen, "Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles," J. Nonlinear Opt. Phys. Mater. 11 421-432 (2002).
    [CrossRef]
  4. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4 957-961 (2004).
    [CrossRef]
  5. T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
    [CrossRef]
  6. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
    [CrossRef]
  7. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
    [CrossRef]
  8. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
    [CrossRef] [PubMed]
  9. S. Linden, C. Enkrich, M.Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
    [CrossRef] [PubMed]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  11. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000).
    [CrossRef]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
    [CrossRef]
  13. B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, "Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays," J. Opt. A-Pure Appl. Opt. 7, 110-117 (2005).
    [CrossRef]
  14. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites. I. Linear optical properties," Phys. Rev. B 53, 2425-2436 (1996).
    [CrossRef]
  15. V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, "Small-particle composites. II. Nonlinear optical properties," Phys. Rev. B 53, 2437-2449 (1996).
    [CrossRef]
  16. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy," Opt. Lett. 28, 713-715 (2003).
    [CrossRef] [PubMed]
  17. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
    [CrossRef] [PubMed]
  18. B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, "Remarkable polarization sensitivity of gold nanoparticle arrays," Appl. Phys. Lett. 86, 183109 (2005).
    [CrossRef]
  19. B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, "Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles," Opt. Express 12, 5418-5423 (2004), <a href="http://oe.osa.org/abstract.cfm?id=81638">http://oe.osa.org/abstract.cfm?id=81638</a>
    [CrossRef] [PubMed]
  20. B. Lamprecht, A. Leitner, and F. R. Aussenegg, "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68, 419-423 (1999).
    [CrossRef]
  21. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  22. J. J. Maki, M. Kauranen, and A. Persoons, "Surface second-harmonic generation from chiral materials," Phys. Rev. B 51, 1425-1434 (1995).
    [CrossRef]
  23. M. Kauranen, T. Verbiest, S. V. Elshocht, and A. Persoons, "Chirality in surface nonlinear optics," Opt. Mater. 9, 286-294 (1998).
    [CrossRef]
  24. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  25. S. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005).
    [CrossRef]
  26. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]

Appl. Phys. B

B. Lamprecht, A. Leitner, and F. R. Aussenegg, "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68, 419-423 (1999).
[CrossRef]

Appl. Phys. Lett.

H. G. Craighead and G. A. Niklasson, "Characterization and optical properties of arrays of small gold particles," Appl. Phys. Lett. 44, 1134-1136 (1984).
[CrossRef]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
[CrossRef]

B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, "Remarkable polarization sensitivity of gold nanoparticle arrays," Appl. Phys. Lett. 86, 183109 (2005).
[CrossRef]

Chem. Phys. Lett.

S. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, and J. Turunen, "Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles," J. Nonlinear Opt. Phys. Mater. 11 421-432 (2002).
[CrossRef]

J. Opt. A-Pure Appl. Opt.

B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, "Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays," J. Opt. A-Pure Appl. Opt. 7, 110-117 (2005).
[CrossRef]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Nano Lett.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4 957-961 (2004).
[CrossRef]

T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

M. Kauranen, T. Verbiest, S. V. Elshocht, and A. Persoons, "Chirality in surface nonlinear optics," Opt. Mater. 9, 286-294 (1998).
[CrossRef]

Phys. Rev. B

J. J. Maki, M. Kauranen, and A. Persoons, "Surface second-harmonic generation from chiral materials," Phys. Rev. B 51, 1425-1434 (1995).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites. I. Linear optical properties," Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, "Small-particle composites. II. Nonlinear optical properties," Phys. Rev. B 53, 2437-2449 (1996).
[CrossRef]

Phys. Rev. Lett.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Science

S. Linden, C. Enkrich, M.Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM image of nanoparticles exhibiting defects within individual particles.

Fig. 2.
Fig. 2.

Nanoparticle array designs and extinction spectra. (a) S1: achiral array of achiral particles; S2: achiral array of chiral particles; S3: chiral array of achiral particles. (b) Extinction spectra for x- and y-polarizations.

Fig. 3.
Fig. 3.

CPV experimental setups for (a) the linear case, and (b) the SHG case; ω: fundamental beam, 2ω: second-harmonic beam.

Fig. 4.
Fig. 4.

Results of SH-CPV measurements. The connecting line segments are guides to the eye. The circular polarization states are indicated by vertical dashed lines.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

CDR = 2 I LHC ( ω ) I RHC ( ω ) I LHC ( ω ) + I RHC ( ω ) .
I j ( 2 ω ) = f j E x 2 ( ω ) + g j E y 2 ( ω ) + h j E x ( ω ) E y ( ω ) 2 ,

Metrics