Abstract

Emission from nanocarbon as a point white-light source is studied in several scientific experiments, i.e., a demonstration of chromatic phenomena of a refractive lens, a diffractive Fresnel phase zone plate (FPZP), and a squared zone plate. Results show that white light from nanocarbon exhibits good coherent properties and can be an ideal point light source in comparison with other normal lighting sources, e.g., a light-emitting diode (LED), a He-Ne laser, and a semiconductor laser diode (LD). Dispersion and even diffraction phenomena could be analyzed this way as well.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Wang, W. Yun, and C. Jacobsen, "Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging," Nature 424, 50-53 (2003).
    [CrossRef] [PubMed]
  2. S. Wang, L. Hu, B. Zhang, D. Zhao, Z. Wei, and Z. Zhang, "Electromagnetic excitation of nanocarbon in vacuum," Opt. Express 13, 3625-3630 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3625">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3625</a>.
    [CrossRef] [PubMed]
  3. E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, "Two methods for increasing the depth of focus of imaging systems," Proc. SPIE 5227, 8-15 (2004).
  4. M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, "Diffractive elements with extended depth of focus," Proc. SPIE 5484, 475-481 (2004).
    [CrossRef]
  5. S. C. Kim, S. E. Lee, and E. S. Kim, "Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer," Proc. SPIE 5443, 250-256 (2004).
    [CrossRef]
  6. S. Wang, D. Zhao, X. Jiang, and F. Huang, "Laser safety monitoring consideration for the largest dam by means of the generalized three-point method," Opt. Laser Technol. 33, 153-156 (2001).
    [CrossRef]
  7. X. Ren, S. Liu, and X. Zhang, "Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications," Proc. SPIE 5456, 391-398 (2004).
    [CrossRef]
  8. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, "Soft x-ray microscopy at a spatial resolution better than 15 nm," Nature 435, 1210-1213 (2005).
    [CrossRef] [PubMed]
  9. S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, "Lensless imaging of magnetic nanostructures by X-ray spectro-holography," Nature 432, 885-888 (2004).
    [CrossRef] [PubMed]
  10. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
    [CrossRef] [PubMed]
  11. E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for keV X-rays," Nature 401, 895-898 (1999).
    [CrossRef]
  12. I. A. Schelokov, D. V. Roshchupkin, A. S. Kondakov, D. V. Irzhak, M. Brunel, and R. Tucoulou, "Second generation of grazing-incidence-phase Fresnel zone plates," Opt. Commun. 159, 278-284 (1999).
    [CrossRef]
  13. S. Wang, X. Jiang, Q. Lin, E. Bernabeu, J. Alda, and V. Martin, "Astigmatism for an inclined Fresnel zone plate," Optik 93, 190-192 (1993).
  14. S. Wang and D. Zhao, Matrix Optics (CHEP-Springer Press, Beijing, 2000).
  15. Y. Fan, H. Ren, and S. Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Opt. Express 13, 4141-4147 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4141.
    [CrossRef] [PubMed]
  16. A. R. Jones, "The focal properties of phase zone plates," Brit. J. Appl. Phys. (J. Phys. D) 2, 1789-1791 (1969).
  17. L. J. Janicijevic, "Diffraction characteristics of square zone plates," J. Opt. (Paris) 13, 199-206 (1982).
    [CrossRef]
  18. S. Wang, Y. Shen, J. Xu, L. Hu, J. Zhu, D. Yang, H. Zhang, Y. Zeng, and J. Yao, "Deep-ultraviolet emission from an InGaAs semiconductor laser," Appl. Phys. Lett. 84, 3007-3009 (2004).
    [CrossRef]
  19. P. Fischer, C. T. A. Brown, J. E. Morris, C. López-Mariscal, E. M. Wright, W. Sibbett, and K. Dholakia, "White light propagation invariant beams," Opt. Express 13, 6657-6666 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6657">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6657</a>.
    [CrossRef] [PubMed]
  20. A. Saliminia, S. L. Chin, and R. Vallée, "Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 ?m," Opt. Express 13, 5731-5738 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5731</a>.
    [CrossRef] [PubMed]
  21. R. R. Alfano and S. L. Shapiro, "Emission in region 4000 to 7000 Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
    [CrossRef]
  22. G. Yang and Y. R. Shen, "Spectral broadening of ultrashort pulses in nonlinear medium," Opt. Lett. 9, 510-512 (1984).
    [CrossRef] [PubMed]
  23. H. Paul, "Interference between independent photons," Rev. Mod. Phys. 58, 209-231 (1986).
    [CrossRef]
  24. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
    [CrossRef] [PubMed]
  25. F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, "The optical resonances in carbon nanotubes arise from excitons," Science 308, 838-841 (2005).
    [CrossRef] [PubMed]
  26. J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, "Experimental observation of classical subwavelength interference with a pseudothermal light source," Phys. Rev. Lett. 94, 173601 (2005).
    [CrossRef] [PubMed]
  27. D. Z. Cao, J. Xiong, and K. Wang, "Geometrical optics in correlated imaging systems," Phys. Rev. A 71, 013801 (2005).
    [CrossRef]
  28. D. Z. Cao and K. Wang, "Sub-wavelength interference in macroscopic observation," Phys. Lett. A 333, 23-29 (2004).
    [CrossRef]
  29. R. L. Vander Wal, A. J. Tomasek, and T. M. Ticich, "Synthesis, laser processing, and flame purification of nanostructured carbon," Nano Lett. 3, 223-229 (2003).
    [CrossRef]
  30. S. Wang and L. Ronchi, "Principles and design of optical arrays," Prog. Optics 25, 279-348 (1988).
    [CrossRef]

Appl. Phys. Lett. (1)

S. Wang, Y. Shen, J. Xu, L. Hu, J. Zhu, D. Yang, H. Zhang, Y. Zeng, and J. Yao, "Deep-ultraviolet emission from an InGaAs semiconductor laser," Appl. Phys. Lett. 84, 3007-3009 (2004).
[CrossRef]

Brit. J. Appl. Phys. (J. Phys. D) (1)

A. R. Jones, "The focal properties of phase zone plates," Brit. J. Appl. Phys. (J. Phys. D) 2, 1789-1791 (1969).

J. Opt. (Paris) (1)

L. J. Janicijevic, "Diffraction characteristics of square zone plates," J. Opt. (Paris) 13, 199-206 (1982).
[CrossRef]

Nano Lett. (1)

R. L. Vander Wal, A. J. Tomasek, and T. M. Ticich, "Synthesis, laser processing, and flame purification of nanostructured carbon," Nano Lett. 3, 223-229 (2003).
[CrossRef]

Nature (6)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

Y. Wang, W. Yun, and C. Jacobsen, "Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging," Nature 424, 50-53 (2003).
[CrossRef] [PubMed]

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, "Soft x-ray microscopy at a spatial resolution better than 15 nm," Nature 435, 1210-1213 (2005).
[CrossRef] [PubMed]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, "Lensless imaging of magnetic nanostructures by X-ray spectro-holography," Nature 432, 885-888 (2004).
[CrossRef] [PubMed]

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for keV X-rays," Nature 401, 895-898 (1999).
[CrossRef]

Opt. Commun. (1)

I. A. Schelokov, D. V. Roshchupkin, A. S. Kondakov, D. V. Irzhak, M. Brunel, and R. Tucoulou, "Second generation of grazing-incidence-phase Fresnel zone plates," Opt. Commun. 159, 278-284 (1999).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

S. Wang, D. Zhao, X. Jiang, and F. Huang, "Laser safety monitoring consideration for the largest dam by means of the generalized three-point method," Opt. Laser Technol. 33, 153-156 (2001).
[CrossRef]

Opt. Lett. (1)

Optik (1)

S. Wang, X. Jiang, Q. Lin, E. Bernabeu, J. Alda, and V. Martin, "Astigmatism for an inclined Fresnel zone plate," Optik 93, 190-192 (1993).

Phys. Lett. A (1)

D. Z. Cao and K. Wang, "Sub-wavelength interference in macroscopic observation," Phys. Lett. A 333, 23-29 (2004).
[CrossRef]

Phys. Rev. A (1)

D. Z. Cao, J. Xiong, and K. Wang, "Geometrical optics in correlated imaging systems," Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, "Experimental observation of classical subwavelength interference with a pseudothermal light source," Phys. Rev. Lett. 94, 173601 (2005).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, "Emission in region 4000 to 7000 Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Proc. SPIE (4)

X. Ren, S. Liu, and X. Zhang, "Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications," Proc. SPIE 5456, 391-398 (2004).
[CrossRef]

E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, "Two methods for increasing the depth of focus of imaging systems," Proc. SPIE 5227, 8-15 (2004).

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, "Diffractive elements with extended depth of focus," Proc. SPIE 5484, 475-481 (2004).
[CrossRef]

S. C. Kim, S. E. Lee, and E. S. Kim, "Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer," Proc. SPIE 5443, 250-256 (2004).
[CrossRef]

Prog. Optics (1)

S. Wang and L. Ronchi, "Principles and design of optical arrays," Prog. Optics 25, 279-348 (1988).
[CrossRef]

Rev. Mod. Phys. (1)

H. Paul, "Interference between independent photons," Rev. Mod. Phys. 58, 209-231 (1986).
[CrossRef]

Science (1)

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, "The optical resonances in carbon nanotubes arise from excitons," Science 308, 838-841 (2005).
[CrossRef] [PubMed]

Other (1)

S. Wang and D. Zhao, Matrix Optics (CHEP-Springer Press, Beijing, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Demonstration of dispersions of a refractive lens (by using light emission from nanocarbon) with focal length f = 302 mm and diameter Φ = 60 mm under stigmatism and with astigmatism and compared with the case of white LED. (a) TEM image of the nanoscaled carbon spheres. (b) The magnification of the squared area in (a). The chromatic phenomenon of the lens near and closer to the lens is shown in (c), and that of the case with astigmatism is shown in (d). If the lighting spot is replaced by a white LED, the corresponding phenomena are given in (e) and (f).

Fig. 2.
Fig. 2.

Scheme of the demonstration set-up using four kinds of light sources. (a) Setup with four different quasi-point sources: white-light spot induced by a focused LD beam, a common white LED, a typical He-Ne laser, and a LD; they are followed by a space l 1, a lens (f = 302 mm) for collimation (l 1 = f), a FPZP (circular or square), a distance l 2, and a screen (recoded by Kodak film), respectively. (b) The spectra of these four sources.

Fig. 3.
Fig. 3.

Chromatic phenomena of a square FPZP under stigmatism (using light from the four kinds of quasi-point source with normal incidence). (a), (b), and (c) are main results illuminated by the collimated white light of the nanocarbon, with the distances between screen and zone plates l 2 = 438 mm, 440 mm, and 442 mm, respectively. (d) The phenomena formed by the He-Ne laser diffracted by a pinhole Φ = 35 μm (Airy disk). (e) The phenomena formed by the LD, single-mode in x direction, and multi-mode in y direction. (f) The phenomena formed by the white LED.

Fig. 4.
Fig. 4.

Quite complete chromatic phenomena of FPZPs under different situations with three kinds of arrangements: (a) the square FPZP is inclined with an angle θ ≈ 10° and illuminated by the light from nanocarbon, (b) compared with the case of LED, (c) the square FPZP is rotated axially by an angle 45°, inclined with an angle θ ≈ 35°, and illuminated by the light from white quasi-point source when l 2 = 439 mm (inset is magnification of the center pattern) and (d) l 2 = 441 mm. Change another circular FPZP (2N = 200, fc = 710 mm, r 1 = 0.68 mm and Δr N = 34 μm) with a diaphragm like (e), and (f) illuminated by the carbon light point source and (g) the case of the FPZP with diaphragm inclined with an angle θ ≈ 40°.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( ζ , η , z , λ ) = iE 0 ( λ ) λz e ikz e ( λ ) m = 0 2 N 1 { ( ) m d 1 m d 1 m exp [ ik 2 z ( x ζ ) 2 ] dx d 1 m cos θ d 1 m cos θ exp { ik 2 z [ ( y η ) 2 + y 2 tan 2 θ ] } dy }
+ iE 0 ( λ ) λz e ikz m = 0 2 N 1 { ( ) m d 1 m + 1 d 1 m + 1 exp [ ik 2 z ( x ζ ) 2 ] dx d 1 m + 1 cos θ d 1 m + 1 cos θ exp { ik 2 z [ ( y η ) 2 + y 2 tan 2 θ ] } dy } ,

Metrics