Abstract

We present a hybrid photonic crystal fiber in which a guided mode is confined simultaneously by modified total internal reflection from an array of air holes and antiresonant reflection from a line of high-index inclusions. Experimental results demonstrate that this fiber shares properties of both index-guided and photonic bandgap structures.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangam, T. A. Birks and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  4. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. -P. Martin Man and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  5. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell and P. D de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  6. W. H. Reeves, J. C. Knight, P. St. J. Russell and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002).
    [PubMed]
  7. J. C. Knight, J. Arriaga, T. A. Birks, Ortigosa-Blanch, W. J. Wadsworth and P. S. J. Russell, "Anomalous dispersion in photonic crystal fibers," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  8. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 1-4 (2004).
    [CrossRef]
  9. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 1540-1550 (2004).
  10. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005).
    [CrossRef] [PubMed]
  11. N. M. Litchinitser, Steven C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
    [CrossRef] [PubMed]
  12. N. M. Litchinitser, A. K. Abeeluck, C. Headley and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  13. N. M. Litchinitser, Steven C. Dunn, Brian Usner, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
    [CrossRef] [PubMed]
  14. Arismar Cerqueira S. Jr., K. Z. Nobrega, H. E. Hernandez-Figueroa and F. Di Pasquale, "A powerful tool based on finite element method for designing photonic crystal devices," Proceedings of International Conference on Telecommunications 287-295 (2004).
  15. P. J. B. Clarricoats and K. B. Chan, "Electromagnetic-wave propagation along radially inhomogeneous dielectric cylinders," Electron. Lett. 6, 694-695 (1970).
    [CrossRef]
  16. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  17. J. Jasapara, T. Hua Her, R. Bise, R. Windeler and D. J. Di Giovanni, "Group-velocity measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1614 (2003).
    [CrossRef]

Electron. Lett.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell and P. D de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

P. J. B. Clarricoats and K. B. Chan, "Electromagnetic-wave propagation along radially inhomogeneous dielectric cylinders," Electron. Lett. 6, 694-695 (1970).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, Ortigosa-Blanch, W. J. Wadsworth and P. S. J. Russell, "Anomalous dispersion in photonic crystal fibers," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

International Conference on Telecommunic

Arismar Cerqueira S. Jr., K. Z. Nobrega, H. E. Hernandez-Figueroa and F. Di Pasquale, "A powerful tool based on finite element method for designing photonic crystal devices," Proceedings of International Conference on Telecommunications 287-295 (2004).

J. Opt. Soc. Am. B

Nature

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (1612 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The concept of a hybrid PCF: (a) Schematic of the hybrid PCF, and (b) relevant effective indices. The regime where hybrid guidance is possible is shaded grey.

Fig. 2.
Fig. 2.

SEM images of the fabricated hybrid photonic crystal fibers: a) Δn = 1.0%, d = 3.2μm, D=4.3μm and Λ = 9.12μm (d/Λ = 0.35), b) Δn = 2.03%, d = 3.88μm, D = 5.70μm and Λ = 7.15μm (d/Λ = 0.54).

Fig. 3.
Fig. 3.

Hybrid PCF based on the preform A: (a) Effective index analysis, showing the cladding index (black line with squares), the guided-mode index of an index-guiding PCF (red line with triangles) and the hybrid modes; (b) Transmitted spectrum.

Fig. 4.
Fig. 4.

Near field images through the 3 low-loss spectral windows. [Media 1]

Fig. 5.
Fig. 5.

Simulated and experimental results of the hybrid PCF based on the preform B.

Fig. 6.
Fig. 6.

Hybrid PCF dispersion in the third PBG.

Metrics