G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]
B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on
field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30, 349–351 (2005).
[Crossref]
[PubMed]
Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
H. Nemec, L. Duvillaret, F. Quemeneur, and P. Kuzel, “Defect modes caused by twinning in oned-imensional photonic crystals,” J. Opt. Soc. Am. B 21, 548–553 (2004).
[Crossref]
G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption
enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref]
[PubMed]
B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]
R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional
photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
[Crossref]
G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
[Crossref]
M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]
Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]
I. R. Matias, I. D. Villar, F. J. Arregui, and R. O. Claus, “Development of an optical refractometer by analysis of one-dimensional photonic bandgap structures with defects,” Opt. Lett. 28, 1099–1101 (2003).
[Crossref]
[PubMed]
Yicheng Lai, W. Zhang, L. Zhang, J. A. R. Williams, and I. Bennion, “Optically tunable fiber grating transmission filters,” Opt. Lett. 28, 2446–2448 (2003).
[Crossref]
[PubMed]
N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]
A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]
T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[Crossref]
M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]
[PubMed]
S. Radic, N. George, and G. P. Agrawal, “Optical switching in lambda/4-shifted nonlinear periodic structure,” Opt. Lett. 19, 1789–1791 (1994).
[Crossref]
[PubMed]
N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]
J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]
W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref]
[PubMed]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]
B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]
A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).
M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]
A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]
M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]
[PubMed]
M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]
[PubMed]
T. G. Brown and B. J. Eggleton, “Bragg solitons and optical switching in nonlinear periodic structures: an historical perspective,” Opt. Express 3, 385–388 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-11-385.
[Crossref]
[PubMed]
A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]
N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]
W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref]
[PubMed]
X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
[Crossref]
J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]
M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]
[PubMed]
B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]
J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]
N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]
H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]
N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]
B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]
G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]
G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption
enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref]
[PubMed]
X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
[Crossref]
T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[Crossref]
M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]
Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]
G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]
G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption
enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref]
[PubMed]
R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional
photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).
W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref]
[PubMed]
Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]
H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]
B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]
N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]
N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]
T. Hattori, N. Tsurumachi, and H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 14, 348–355 (1997).
[Crossref]
R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional
photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional
photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]
A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]
N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]
Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]
G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]
J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]
N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]
M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]
M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]
M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]
[PubMed]
G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
[Crossref]
G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]
G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption
enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref]
[PubMed]
M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]
B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]
G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]
G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption
enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref]
[PubMed]
A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]
N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]
J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]
J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]
G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
[Crossref]
A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).
B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]
H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]
T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[Crossref]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]
R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional
photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]
G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]
G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption
enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref]
[PubMed]
Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]
Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]
G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]
B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]
G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
[Crossref]
Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]
A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]
H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]
N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]
R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional
photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[Crossref]
Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]
X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
[Crossref]
M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]
H. Nemec, L. Duvillaret, F. Quemeneur, and P. Kuzel, “Defect modes caused by twinning in oned-imensional photonic crystals,” J. Opt. Soc. Am. B 21, 548–553 (2004).
[Crossref]
T. Hattori, N. Tsurumachi, and H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 14, 348–355 (1997).
[Crossref]
N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]
I. R. Matias, I. D. Villar, F. J. Arregui, and R. O. Claus, “Development of an optical refractometer by analysis of one-dimensional photonic bandgap structures with defects,” Opt. Lett. 28, 1099–1101 (2003).
[Crossref]
[PubMed]
Yicheng Lai, W. Zhang, L. Zhang, J. A. R. Williams, and I. Bennion, “Optically tunable fiber grating transmission filters,” Opt. Lett. 28, 2446–2448 (2003).
[Crossref]
[PubMed]
G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption
enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref]
[PubMed]
B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on
field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30, 349–351 (2005).
[Crossref]
[PubMed]
S. Radic, N. George, and G. P. Agrawal, “Optical switching in lambda/4-shifted nonlinear periodic structure,” Opt. Lett. 19, 1789–1791 (1994).
[Crossref]
[PubMed]
J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]
W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref]
[PubMed]
M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref]
[PubMed]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).