Abstract

One-dimensional (1D) photonic crystals (PC) containing two-layer CdS defects are proposed and fabricated by using electron beam evaporation. Ultrafast nonlinear optical responses were characterized with the ultrafast pump-probe method in both time and spectral domains. Two-photon absorption coefficient enhancement and pump-beam-induced defect mode shift were reported. Both effects are attributed to the light localization in the defect layer of the multilayer structures. Our results demonstrated that defective photonic crystals are good candidates for fabrication of ultrafast all-optical switching devices.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optical switching in nonlinear chiral distributed Bragg reflectors with defect layers

L. Gilles and P. Tran
J. Opt. Soc. Am. B 19(4) 630-639 (2002)

Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure

Guohong Ma, Sing Hai Tang, Jie Shen, Zhuangjian Zhang, and Zhongyi Hua
Opt. Lett. 29(15) 1769-1771 (2004)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. I. R. Matias, I. D. Villar, F. J. Arregui, and R. O. Claus, “Development of an optical refractometer by analysis of one-dimensional photonic bandgap structures with defects,” Opt. Lett. 28, 1099–1101 (2003).
    [Crossref] [PubMed]
  3. G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
    [Crossref]
  4. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
    [Crossref]
  5. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
    [Crossref]
  6. H. Nemec, L. Duvillaret, F. Quemeneur, and P. Kuzel, “Defect modes caused by twinning in oned-imensional photonic crystals,” J. Opt. Soc. Am. B 21, 548–553 (2004).
    [Crossref]
  7. B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30, 349–351 (2005).
    [Crossref] [PubMed]
  8. G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
    [Crossref] [PubMed]
  9. R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
    [Crossref]
  10. Yicheng Lai, W. Zhang, L. Zhang, J. A. R. Williams, and I. Bennion, “Optically tunable fiber grating transmission filters,” Opt. Lett. 28, 2446–2448 (2003).
    [Crossref] [PubMed]
  11. Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
    [Crossref]
  12. T. Hattori, N. Tsurumachi, and H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 14, 348–355 (1997).
    [Crossref]
  13. G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
    [Crossref]
  14. N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
    [Crossref]
  15. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
    [Crossref]
  16. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [Crossref] [PubMed]
  17. S. Radic, N. George, and G. P. Agrawal, “Optical switching in lambda/4-shifted nonlinear periodic structure,” Opt. Lett. 19, 1789–1791 (1994).
    [Crossref] [PubMed]
  18. A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
    [Crossref]
  19. H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
    [Crossref]
  20. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
    [Crossref] [PubMed]
  21. T. G. Brown and B. J. Eggleton, “Bragg solitons and optical switching in nonlinear periodic structures: an historical perspective,” Opt. Express 3, 385–388 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-11-385.
    [Crossref] [PubMed]
  22. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
    [Crossref]
  23. J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
    [Crossref]
  24. X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
    [Crossref]
  25. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
    [Crossref]
  26. A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).

2005 (2)

B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30, 349–351 (2005).
[Crossref] [PubMed]

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]

2004 (5)

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]

H. Nemec, L. Duvillaret, F. Quemeneur, and P. Kuzel, “Defect modes caused by twinning in oned-imensional photonic crystals,” J. Opt. Soc. Am. B 21, 548–553 (2004).
[Crossref]

Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref] [PubMed]

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

2003 (6)

Yicheng Lai, W. Zhang, L. Zhang, J. A. R. Williams, and I. Bennion, “Optically tunable fiber grating transmission filters,” Opt. Lett. 28, 2446–2448 (2003).
[Crossref] [PubMed]

I. R. Matias, I. D. Villar, F. J. Arregui, and R. O. Claus, “Development of an optical refractometer by analysis of one-dimensional photonic bandgap structures with defects,” Opt. Lett. 28, 1099–1101 (2003).
[Crossref] [PubMed]

G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
[Crossref]

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]

X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
[Crossref]

1999 (1)

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]

1998 (1)

1997 (1)

1995 (1)

A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]

1994 (3)

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

S. Radic, N. George, and G. P. Agrawal, “Optical switching in lambda/4-shifted nonlinear periodic structure,” Opt. Lett. 19, 1789–1791 (1994).
[Crossref] [PubMed]

1992 (1)

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

1991 (1)

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]

1987 (2)

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

1979 (1)

H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Agrawal, G. P.

Anand, S.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]

Arregui, F. J.

Baino, B.

A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).

Bennion, I.

Bertolotti, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Bieber, A. E.

A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Brown, T. G.

T. G. Brown and B. J. Eggleton, “Bragg solitons and optical switching in nonlinear periodic structures: an historical perspective,” Opt. Express 3, 385–388 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-11-385.
[Crossref] [PubMed]

A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Chen, W.

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

Claus, R. O.

Cui, Y. -P.

X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
[Crossref]

Danlaert, J.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Duvillaret, L.

Eggleton, B. J.

Ferrini, R.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]

Fobelets, K.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]

Fuji, T.

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]

Garmire, E.

H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

George, N.

Hattori, T.

Hattoti, T.

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]

Houdre, R.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]

Hua, Z. Y.

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]

G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref] [PubMed]

Huang, X.-Q.

X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
[Crossref]

Krauss, T. D.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[Crossref]

Kuzel, P.

Lai, Yicheng

Larciprete, M. C.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Lavrentovich, O. D.

Lu, H.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]

Ma, G. H.

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]

G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref] [PubMed]

Matias, I. R.

Matsuhisa, Y.

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Matsuhisa, Yuko

Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Miller, A.

A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).

Mills, D. L.

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

Ming, N. B.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]

Morburger, J. H.

H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Mulot, M.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]

Muroi, N.

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]

Nakatsuka, H.

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]

T. Hattori, N. Tsurumachi, and H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 14, 348–355 (1997).
[Crossref]

Nemec, H.

Ozaki, M.

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Ozaki, Masanori

Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Ozaki, R.

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Ozaki, Ryotaro

Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Paoloni, S.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Prelewitz, A. F.

A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]

Prelewitz, D. F.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Qin, Q.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]

Quemeneur, F.

Radic, S.

Rajiv, K.

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]

Reinisch, R.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]

Sankey, N. D.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Sarto, F.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Scalora, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Schneider, G. J.

G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
[Crossref]

Senyuk, B. I.

Shen, J.

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]

G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref] [PubMed]

Sibilia, C.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Smalyukh, I. I.

Smith, C. J. M.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]

Tang, S. H.

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]

G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref] [PubMed]

Tiberio, R. C.

A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]

Tsurumachi, N.

Tsurumaehi, N.

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]

Veretennicoff, I.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]

Villar, I. D.

Vitran, G.

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]

Wastson, G. H.

G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
[Crossref]

Welford, K. R.

A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).

Wild, B.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]

Williams, J. A. R.

Winful, H. G.

H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

Wise, F. W.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yamashita, S.

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]

Yoshino, K.

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Yoshino, Katsumi

Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Yuan, C. S.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]

Zhang, L.

Zhang, W.

Zhang, Z. J.

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]

G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, “Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure,” Opt. Lett. 29, 1769–1771(2004).
[Crossref] [PubMed]

Zhu, S. N.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]

Zhu, Y. Y.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]

Appl. Phys. B (1)

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, “Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states,” Appl. Phys. B 80, 359–363 (2005).
[Crossref]

Appl. Phys. Lett. (9)

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[Crossref]

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, “Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer,” Appl. Phys. Lett. 84, 1844–1846 (2004).
[Crossref]

G. J. Schneider and G. H. Wastson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals,” Appl. Phys. Lett. 83, 5350–5352 (2003).
[Crossref]

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[Crossref]

A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, “Optical switching in a metal-semiconductor-metal waveguide structure,” Appl. Phys. Lett. 66, 3401–3403 (1995).
[Crossref]

H. G. Winful, J. H. Morburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
[Crossref]

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodical-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739–1741 (1994).
[Crossref]

Chin Phys.Lett. (1)

X.-Q. Huang and Y. -P. Cui, “Degeneracy and split of defect states in photonic crystals ,” Chin Phys.Lett. 20, 1721–1723 (2003).
[Crossref]

J. Appl. Phys. (1)

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. 38, 6302–6308 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. B (1)

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
[Crossref]

Phys. Rev. Lett. (3)

W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Other (1)

A. Miller, K. R. Welford, and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The simulated transmission spectra of 1D PC structures of (HL)4D(LD)m(LH)4 with m=1 [Fig. 1(a)] and m=7 [Fig. 1(b)], respectively.

Fig. 2.
Fig. 2.

The simulated transmission spectra of 1D PC structures with two defect layers, i.e., (HL)4DL(HL)nD(LH)4 with n=0, 1, 2, 3, and 7, respectively.

Fig. 3.
Fig. 3.

The measured transmission spectra of 1D PC structures of (HL)4DL(HL)nD(LH)4 with n=2 (black) and 3 (red), respectively. The arrow indicates the wavelength of the pump beam in the experiment.

Fig. 4.
Fig. 4.

Transient transmission changes of probe beam for (HL)4DL(HL)3D(LH)4 PC structure (black) and bulk ZnSe (red) with the incident wavelength of 800 nm. The signal of ZnSe was multiplied by a factor of 0.1 for comparison. The pump intensity is about 1.1 GW/cm2 at the wavelength of 800 nm.

Fig. 5.
Fig. 5.

(a) Spectrum of probe beam before the sample (green); (b) Transmitted spectrum of probe after the sample without pump beam (black); (c) Pump-beam induced transmitted spectrum of probe at zero delay time (red).

Metrics