Abstract

We report the fabrication of micro lens using an alternative annular scanning mode with continuous variable layer thickness by two-photon polymerization after multi-parameter optimization. Laser scanning mode and scanning pace parameter are optimized to achieve good appearance. As examples of the results, a 2 × 2 micro spherical lens array with diameter of 15 μm and a micro Fresnel lens with diameter of 17 μm are fabricated. Their optical performances are also tested. Compared to the conventional femtosecond two-photon fabrication, this work provides an alternative, effective and cheap processing method for the fabrication of micro optic device that requires arbitrary shape with high surface quality and small scale.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. J. Suleskiand and R. D. TeKolste," Fabrication Trends for Free-Space Microoptics," J. Lightwave Technol. 23, 633 (2005)
    [CrossRef]
  2. P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner and S. Haselbeck," Design, fabrication and testing of microlens arrays for sensors and Microsystems," Pure Appl. Opt. 6, 617 (1997)
    [CrossRef]
  3. S. Sugiyama, S. Khumpuang and G. Kawaguchi," Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications," J. Micromech. Microeng. 14,1399 (2004)
    [CrossRef]
  4. J. Yao, Z. Cui, F. Gao, Y. Zhang, Y. Guo, C. Du, H. Zeng and C. Qiu," Refractive micro lens array made of dichromate gelatin with gray-tone photolithography," Microelectron. Eng. 57-58, 729 (2001)
    [CrossRef]
  5. M. He, X. C. Yuan, N. Q. Ngo, J. Bu and S. H. Tao," Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling," J. Opt. A: Pure Appl. Opt. 6, 94 (2004).
    [CrossRef]
  6. S. Kawata, H. B. Sun, T. Tanaka and K. Takada," Finer features for functional microdevices," Nature 412, 697 (2001).
    [CrossRef] [PubMed]
  7. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder and J. W. Perry," Two-photon polymerization initiators for threedimensional optical data storage and microfabrication," Nature 398, 51 (1999).
    [CrossRef]
  8. Z. W. Jiang, Y. J. Zhou, D. J. Yuan, W. H. Huang and A. D. Xia," A Two-Photon Femtosecond Laser System for Three-Dimensional Microfabrication and Data Storage," Chin. Phys. Lett. 20, 2126 (2003).
    [CrossRef]
  9. R. Guo, Z. Y. Li,Z. W. Jiang, D. J. Yuan, W. H. Huang and A. D. Xia," Log-pile photonic crystal fabricated by two-photon photopolymerization," J. Opt. A: Pure Appl. Opt. 7, 396 (2005)
    [CrossRef]
  10. H. B. Sun, M. Maeda, K. Takada, James W. M. Chon, M. Gu and S. Kawata," Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819 (2003).
    [CrossRef]
  11. J. Serbin and B. Chichkov," High-resolution direct-write femtosecond laser technologies," in Solid State Laser Technologies and Femtosecond Phenomena, Jonathan A. C. Terry, W. Andrew Clarkson, eds. Proc. SPIE 5620, 245-251 (2004).
    [CrossRef]
  12. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova and R. S. Taylor," Stress in femtosecond-laser-written waveguides in fused silica," Opt.Lett. 29, 1312 (2004)
    [CrossRef] [PubMed]
  13. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, K. Hirao," Fabrication of high-efficiency diffraction gratings in glass," Opt.Lett. 30, 352 (2005)
    [CrossRef] [PubMed]
  14. Q. Z. Zhao, J. R. Qiu, X. W. Jiang, E. W. Dai, C. H. Zhou and C. S. Zhu," Direct writing computer-generated holograms on metal film by an infrared femtosecond laser," Opt. Express 13, 2089 (2005).
    [CrossRef] [PubMed]
  15. H. B. Sun, S. Matsuo and H. Misawa," Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786 (1999).
    [CrossRef]
  16. K. Kaneko, H. B. Sun, X. M. Duan and S. Kawata," Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091 (2003).
    [CrossRef]
  17. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch and C. M. Soukoulis," Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Mater. 3, 444 (2004).
    [CrossRef]
  18. J. Serbin, A. Ovsianikov, and B. Chichkov," Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt.Express 12, 5221 (2004).
    [CrossRef] [PubMed]
  19. H. F. Jiu, H. H. Tang, J. L. Zhou, J. Xu, Q. J. Zhang, H. Xing, W. H. Huang and A. D. Xia,"Sm(DBM)3Phen-doped poly(methyl methacrylate) for three-dimensional multilayered optical memory," Opt. Lett. 30, 774 (2005)
    [CrossRef] [PubMed]
  20. J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata," Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005)
    [CrossRef]
  21. M. Straub, M. Ventura, and M. Gu," Multiple Higher-Order Stop Gaps in Infrared Polymer Photonic Crystals,"Phys. Rev. Lett. 91, 043901 (2003)
    [CrossRef] [PubMed]
  22. N. Takeshima, Y.Narita, T. Nagata, S. Tanaka and K. Hirao," Fabrication of photonic crystals in ZnS-doped glass," Opt.Lett. 30,537 (2005)
    [CrossRef] [PubMed]
  23. K. Takada, H. B. Sun, and S. Kawata," Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
    [CrossRef]
  24. R. Guo,S. Z. Xiao,H. Xing,W. H. Huang and A. D. Xia," Effect of overlapping degree to surface roughness in a femtosecond laser micro fabrication," Photonics China 6, 9 (2004)
  25. W . Watanabe, D. Kuroda, K . Itoh and J. Nishii," Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses," Opt. Express 10, 9 78 (2002).
    [PubMed]
  26. M. Born and E. Wolf, Principles of Optics (Cambridge, 1999).
  27. H. Nishihara and T. Suhara,Micro Fresnel Lenses Progress in Optics (Elsevier Science, Amsterdam, 1987).
  28. D. F. Vanderwerf," Ghost-image analysis of Fresnel lens doublet," in Stray Radiation in Optical Systems, Robert P. Breault, eds. Proc. SPIE 1331, 143-157 (1990)
    [CrossRef]

Appl. Phys. Lett.

H. B. Sun, M. Maeda, K. Takada, James W. M. Chon, M. Gu and S. Kawata," Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819 (2003).
[CrossRef]

H. B. Sun, S. Matsuo and H. Misawa," Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786 (1999).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan and S. Kawata," Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091 (2003).
[CrossRef]

K. Takada, H. B. Sun, and S. Kawata," Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H. B. Sun, and S. Kawata," Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005)
[CrossRef]

Chin. Phys. Lett.

Z. W. Jiang, Y. J. Zhou, D. J. Yuan, W. H. Huang and A. D. Xia," A Two-Photon Femtosecond Laser System for Three-Dimensional Microfabrication and Data Storage," Chin. Phys. Lett. 20, 2126 (2003).
[CrossRef]

J. Lightwave Technol.

J. Micromech. Microeng.

S. Sugiyama, S. Khumpuang and G. Kawaguchi," Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications," J. Micromech. Microeng. 14,1399 (2004)
[CrossRef]

J. Opt. A: Pure Appl. Opt.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu and S. H. Tao," Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling," J. Opt. A: Pure Appl. Opt. 6, 94 (2004).
[CrossRef]

J. Otp. A: Pure Appl. Opt.

R. Guo, Z. Y. Li,Z. W. Jiang, D. J. Yuan, W. H. Huang and A. D. Xia," Log-pile photonic crystal fabricated by two-photon photopolymerization," J. Opt. A: Pure Appl. Opt. 7, 396 (2005)
[CrossRef]

Microelectron. Eng.

J. Yao, Z. Cui, F. Gao, Y. Zhang, Y. Guo, C. Du, H. Zeng and C. Qiu," Refractive micro lens array made of dichromate gelatin with gray-tone photolithography," Microelectron. Eng. 57-58, 729 (2001)
[CrossRef]

Nature

S. Kawata, H. B. Sun, T. Tanaka and K. Takada," Finer features for functional microdevices," Nature 412, 697 (2001).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder and J. W. Perry," Two-photon polymerization initiators for threedimensional optical data storage and microfabrication," Nature 398, 51 (1999).
[CrossRef]

Nature Mater.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch and C. M. Soukoulis," Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Mater. 3, 444 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics China

R. Guo,S. Z. Xiao,H. Xing,W. H. Huang and A. D. Xia," Effect of overlapping degree to surface roughness in a femtosecond laser micro fabrication," Photonics China 6, 9 (2004)

Phys. Rev. Lett.

M. Straub, M. Ventura, and M. Gu," Multiple Higher-Order Stop Gaps in Infrared Polymer Photonic Crystals,"Phys. Rev. Lett. 91, 043901 (2003)
[CrossRef] [PubMed]

Proc. SPIE

D. F. Vanderwerf," Ghost-image analysis of Fresnel lens doublet," in Stray Radiation in Optical Systems, Robert P. Breault, eds. Proc. SPIE 1331, 143-157 (1990)
[CrossRef]

J. Serbin and B. Chichkov," High-resolution direct-write femtosecond laser technologies," in Solid State Laser Technologies and Femtosecond Phenomena, Jonathan A. C. Terry, W. Andrew Clarkson, eds. Proc. SPIE 5620, 245-251 (2004).
[CrossRef]

Pure Appl. Opt.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner and S. Haselbeck," Design, fabrication and testing of microlens arrays for sensors and Microsystems," Pure Appl. Opt. 6, 617 (1997)
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Cambridge, 1999).

H. Nishihara and T. Suhara,Micro Fresnel Lenses Progress in Optics (Elsevier Science, Amsterdam, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The diagram of the evaluation system for micro lens optical performance.

Fig. 2.
Fig. 2.

Simulations of microfabrication scanning method effects on micro lens surface quality: (a) parallel linear scanning method with fixed constant Delta Z, (b) annular scanning method with a fixed constant Delta Z, (c) annular scanning method with a dynamical Zi , where Zi =[R 2-(i·lx)2]1/2.

Fig. 3.
Fig. 3.

The correlation of the lateral scanning step (lx) effect with the surface roughness (Ra), The data are gotten by 50× WYKO NT1000 (Veeco Metrology Group).

Fig. 4.
Fig. 4.

Scanning electron microscope images of micro lens fabricated with optimized parameters: (a), (b) 2×2 array micro spherical lens and its close-up view. (c) The curve indicates the alternation of Delta Z according to layer number i. (d-g) micro Fresnel lens fabricated with different lateral scanning step: 100 nm, 200 nm, 300 nm and 400 nm, respectively. For each Fresnel lens, the thickness is 2μm, and the diameter is 17 μm. The refractive index is 1.53. The number of zones is 3 and their radiuses are 5.0 μm, 7.1 μm and 8.7 μm, respectively.

Fig. 5.
Fig. 5.

The optical performance of micro lens: (a) the simulated and experimental focus intensity distribution of the micro spherical lens, the focus length is detected about 60 μm (b) The simulated and experimental diffractive intensity distribution of micro Fresnel lens, the detected image was obtained at a distance of 350 μm away from the lens, (c) and (d) are the detection of micro Fresnel lens imaging ability, (c) the real ghost image of “USTC”, detected at about 250 μm behind the Fresnel lens, (d) the spurious ghost image of “USTC”, detected at about 200 μm before the Fresnel lens.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y ) = i λz s E ( x 0 , y 0 ) exp { ikz [ 1 + ( x x 0 ) 2 ( y y 0 ) 2 2 z 2 ] } dx 0 dy 0
E ( x 0 , y 0 ) = E in · H lens ( x 0 , y 0 ) = E in · A lens · exp ( i φ lens )
φ spherical ( r ) = k 0 · ( R 2 r 2 ) 1 2
φ fresnel ( r ) = k 0 ( f ( f 2 + r 2 ) 1 2 )

Metrics