Abstract

An experimental protocol for the realization of three-dimensional periodic metallic micro/nanostructures over large areas is presented. Simultaneous fabrication of hundreds of three-dimensional complex polymer structures is achieved using a two-photon photopolymerization (TPP) technique combined with a microlens array. Metallization of the structures is performed through the deposition of thin and highly conductive films by electroless plating. A chemical modification of the photopolymerizable resin and the production of a hydrophobic coating on the glass surface supporting the structures are realized. This process prevents metal deposition on the substrate and restricts adhesion on polymer. Our technique can produce periodic and/or isolated metallic structures with arbitrary shape, created by more than 700 individual objects written in parallel.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  2. B. H. Cumpston, S P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D.McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature (London) 398, 51-54 (1999).
    [CrossRef]
  3. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
    [CrossRef] [PubMed]
  4. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature (London) 412, 697-698 (2001).
    [CrossRef] [PubMed]
  5. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
    [CrossRef] [PubMed]
  6. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
    [CrossRef]
  7. W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, "Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography," J. Appl. Phys. 97, 054907 (2005).
    [CrossRef]
  8. K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
    [CrossRef]
  9. K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
    [CrossRef]
  10. T. Baldacchini, A.-C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1275.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1275.</a>
    [CrossRef] [PubMed]
  11. P.-W.Wu,W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, "Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix," Adv. Mater. 12, 1438-1441 (2000).
    [CrossRef]
  12. F. Stellacci, C. A. Bauer, T.Meyer-Friedrichsen, W.Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
    [CrossRef]
  13. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
    [CrossRef]
  14. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
    [CrossRef]
  15. L. P. Lee and R. Szema, "Inspirations from biological optics for advanced photonic systems," Science 310, 1148-1150 (2005).
    [CrossRef] [PubMed]
  16. G. O. Mallory and J. B. Hajdu, Electroless plating: fundamentals and applications (American Electroplaters and Surface Finishers Society, Orlando, FL, 1990).
  17. A. A. Antipov, G. B. Sukhorukov, Y. A. Fedutik, J. Hartmann, M. Giersig, and H. Mohwald, "Fabrication of a novel type of metallized colloids and hollow capsules," Langnuir 18, 6687-6693 (2002).
    [CrossRef]
  18. N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jap. J. Appl. Phys. 44, 1134-1137 (2005).
    [CrossRef]
  19. L. J. Gerenser, "Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment," J. Vac. Sci. Technol. A 8, 3682-3691 (1990).
    [CrossRef]
  20. J. E. Gray, P. R. Norton and K. Griffiths, "Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)," Thin Solid Films 484, 196-207 (2005).
    [CrossRef]
  21. F. Guan, M. Chen, W. Yang, J. Wang, S. Yong, and Q. Xue, "Fabrication of patterned gold microstructure by selective electroless plating," Appl. Surf. Sci. 240, 24-27 (2005).
    [CrossRef]
  22. S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, "New strategy for preparing thin gold films on modified glass surfaces by electroless deposition," Langmuir 19, 3958-3965 (2003).
    [CrossRef]
  23. H. P. Herzig, Micro-optics (Taylor & Francis, London, 1997).
  24. Ph. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck , "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
    [CrossRef]
  25. Y. Kobayashi, V. Salgueiriño-Maceira, and L. M. Liz-Marzán, "Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating," Chem. Mater. 13, 1630-1633 (2001).
    [CrossRef]
  26. Y. Saito, J. J. Wang, D. N. Batchelder, and D. A. Smith, "Simple chemical method for forming silver surfaces with controlled grain sizes for surface plasmon experiments," Langmuir 19, 6857-6861 (2003).
    [CrossRef]
  27. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004).
    [CrossRef] [PubMed]

Adv. Mater.

P.-W.Wu,W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, "Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix," Adv. Mater. 12, 1438-1441 (2000).
[CrossRef]

F. Stellacci, C. A. Bauer, T.Meyer-Friedrichsen, W.Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Appl. Phys. A

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

Appl. Phys. Lett.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
[CrossRef]

Appl. Surf. Sci.

F. Guan, M. Chen, W. Yang, J. Wang, S. Yong, and Q. Xue, "Fabrication of patterned gold microstructure by selective electroless plating," Appl. Surf. Sci. 240, 24-27 (2005).
[CrossRef]

Chem. Mater.

Y. Kobayashi, V. Salgueiriño-Maceira, and L. M. Liz-Marzán, "Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating," Chem. Mater. 13, 1630-1633 (2001).
[CrossRef]

J. Appl. Phys.

W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, "Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography," J. Appl. Phys. 97, 054907 (2005).
[CrossRef]

J. Vac. Sci. Technol. A

L. J. Gerenser, "Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment," J. Vac. Sci. Technol. A 8, 3682-3691 (1990).
[CrossRef]

Jap. J. Appl. Phys.

N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jap. J. Appl. Phys. 44, 1134-1137 (2005).
[CrossRef]

Langmuir

Y. Saito, J. J. Wang, D. N. Batchelder, and D. A. Smith, "Simple chemical method for forming silver surfaces with controlled grain sizes for surface plasmon experiments," Langmuir 19, 6857-6861 (2003).
[CrossRef]

S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, "New strategy for preparing thin gold films on modified glass surfaces by electroless deposition," Langmuir 19, 3958-3965 (2003).
[CrossRef]

Langnuir

A. A. Antipov, G. B. Sukhorukov, Y. A. Fedutik, J. Hartmann, M. Giersig, and H. Mohwald, "Fabrication of a novel type of metallized colloids and hollow capsules," Langnuir 18, 6687-6693 (2002).
[CrossRef]

Nature

B. H. Cumpston, S P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D.McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature (London) 398, 51-54 (1999).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature (London) 412, 697-698 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Pure Appl. Opt.

Ph. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck , "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Science

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

L. P. Lee and R. Szema, "Inspirations from biological optics for advanced photonic systems," Science 310, 1148-1150 (2005).
[CrossRef] [PubMed]

Thin Solid Films

J. E. Gray, P. R. Norton and K. Griffiths, "Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)," Thin Solid Films 484, 196-207 (2005).
[CrossRef]

Other

G. O. Mallory and J. B. Hajdu, Electroless plating: fundamentals and applications (American Electroplaters and Surface Finishers Society, Orlando, FL, 1990).

H. P. Herzig, Micro-optics (Taylor & Francis, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Fabrication process: (1) Hydrophobic coating of the glass slides to avoid metal deposition, (2) TPP fabrication with chemically modified photopolymerizable resin, (3) SnCl 2 surface pre-treatment to improve metal deposition and adhesion, (4) Silver coating by electroless plating.

Fig. 2.
Fig. 2.

(a) Intensity profile of the expanded beam measured before the microlens array along the horizontal direction. (b) Optical image of the fluorescence emitted from a PMMA film mixed with coumarin 314 dyes, due to the excitation by the multiple spots after the microlens array.

Fig. 3.
Fig. 3.

(a) SEM image of polymer channels (height ~2.7 μm) written in parallel using the microlens array. (b) SEM image of self-standing empty cubic structures (height ~4.6 μm) connected by pairs.

Fig. 4.
Fig. 4.

(a) SEM image of polymer structures fabricated with non-modified resin on a regular glass slide. Uncoated ‘N’ objets surrounded by a thin silver film after electroless plating. (b) Left: 170×125 μm 2 SEM image of a large 3D metallic periodic structure fabricated by multiple-beam TPP process and selective silver overcoating. Right: tilted magnified view.

Fig. 5.
Fig. 5.

(a) 78×58 μm 2 SEM image of a 3D periodic silver coated structure fabricated on a hydrophobic coated glass surface. (b) Tilted magnified view of an individual uncoated polymer structure composed of a cube (2μm in size) holding up a spring (height 2.2 μm, inner diameter 1 μm). (c) SEM image of an individual silver coated structure after electroless plating.

Fig. 6.
Fig. 6.

(a) EDX spectrum of a silver coated polymer structure fabricated on a hydrophobic glass substrate. (b) Backscattered-electron image of several structures and (c) EDX image simultaneously recorded at the energy of the main silver peak (~3 keV). (d) Magnified EDX image of an individual structure.

Metrics