Abstract

We propose a novel microscopy technique based on the four-wave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our proposed FWM technique can be used to obtain a one-dimensional image of ethanol-thinned Coumarin 120 solution sandwiched between a hole-slide glass and a cover slip, and a two-dimensional image of a leaf of Camellia sinensis.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  2. K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
    [CrossRef] [PubMed]
  3. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett. 22, 1323-1325 (1997).
    [CrossRef]
  4. Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA 96, 10854-10856 (1999).
    [CrossRef] [PubMed]
  5. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Siberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
    [CrossRef]
  6. J. A. Squier, M. Müller, G. J. Brankenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-324 (1998) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-9-315">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-9-315</a>.
    [CrossRef] [PubMed]
  7. M. D. Duncan, J. Reintjes, and T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7, 350-352 (1982).
    [CrossRef] [PubMed]
  8. A. Zumbusch, G. R. Holtom and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  9. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
    [CrossRef]
  10. P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A819 (1965).
    [CrossRef]
  11. M. D. Levenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. B 10, 4447-4464 (1974).
    [CrossRef]
  12. M. J. Fernee, P. E. Barker, A. E. W. Knight, and H. Rubinsztein-Dunlop, "Infrared seeded parametric four-wave mixing for sensitive detection of molecules," Phys. Rev. Lett. 79, 2046-2049 (1997).
    [CrossRef]
  13. A. D. Sappey, "Optical imaging through turbid media with a degenerate four wave mixing correlation time gate," Appl. Opt. 33, 8346-8354 (1994).
    [CrossRef] [PubMed]
  14. H. Lotem, R. T. Lynch, J, and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
    [CrossRef]
  15. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
    [CrossRef]
  16. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microscopy," Opt. Express 13, 1322-1327 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1322">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1322</a>.
    [CrossRef] [PubMed]
  17. K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167-L169 (2005).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Siberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

J. Microsc.

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

J. Phys. Chem. B

J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multispectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. 44, L167-L169 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A819 (1965).
[CrossRef]

Phys. Rev. A

H. Lotem, R. T. Lynch, J, and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
[CrossRef]

Phys. Rev. B

M. D. Levenson and N. Bloembergen, "Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media," Phys. Rev. B 10, 4447-4464 (1974).
[CrossRef]

Phys. Rev. Lett.

M. J. Fernee, P. E. Barker, A. E. W. Knight, and H. Rubinsztein-Dunlop, "Infrared seeded parametric four-wave mixing for sensitive detection of molecules," Phys. Rev. Lett. 79, 2046-2049 (1997).
[CrossRef]

A. Zumbusch, G. R. Holtom and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA

Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA 96, 10854-10856 (1999).
[CrossRef] [PubMed]

Science

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Energy diagrams for (a) TPEF (b) CARS and (c) SPE processes, where dashed lines indicate virtual states.

Fig. 2.
Fig. 2.

Experimental setup: M, mirror; OB, objective; DM, dichroic mirror; F, BG-39 filter; SM, fiber optic spectrometer.

Fig. 3.
Fig. 3.

Emission spectra: (a) emission spectrum from solution of Coumarin 120, (b) emission spectrum from cover slip, and (c) magnified view of (a).

Fig. 4.
Fig. 4.

SPE signal intensity dependence on pump (a) and dump (b) intensities: ISPE, SPE signal intensity; Ipump, pump intensity; Idump, dump intensity.

Fig. 5.
Fig. 5.

Dependence of signal intensity of dye solution on dump wavelength.

Fig. 6.
Fig. 6.

Intensity cross sections of Coumarin 120 dissolved in ethanol on a hole-slide glass and sandwiched with a cover slip; (a) SPE, (b) THG, and (c) TPEF signals.

Fig. 7.
Fig. 7.

Axial response (a) 1-D distribution of edge of cover slip. (b) derivative of 1-D distribution (a).

Fig. 8.
Fig. 8.

Dependence of SPE signal intensity of distilled water on pump wavelength.

Fig. 9.
Fig. 9.

Images of vascular bundles in the leaf of Camellia sinensis (a) SPE image. (b) Transmission image. (c) Autofluorescence image. Scale bar indicates 10 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Re { χ ( 3 ) } = A t ω t ( ω 1 + ω 2 ) [ ω t ( ω 1 + ω 2 ) ] 2 + Γ t 2 + A R Ω ( ω 1 ω 3 ) [ Ω ( ω 1 ω 3 ) ] 2 + Γ R 2 + χ nr ( 3 ) ,
Im { χ ( 3 ) } = A t Γ t [ ω t ( ω 1 + ω 2 ) ] 2 + Γ t 2 + A R Γ R [ Ω ( ω 1 ω 3 ) ] 2 + Γ R 2 .

Metrics