Abstract

We demonstrate a successful recompression of 4.5 mJ, 30 fs femtosecond pulses from a Ti:Sapphire oscillator amplified in a ring multipass optical parametric chirped pulse amplifier using β-barium borate crystal pumped by a commercial frequency doubled Nd:YAG laser. Pulses with duration close to the Fourier transform limit were obtained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Dubietis, G. Jonušauskas, and A. Piskarskas, "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal," Opt. Commun. 88, 437-440 (1992).
    [CrossRef]
  2. X. Yang, Z. Xu, Z. Zhang, Y. Leng, J. Peng, J. Wang, S. Jin, W. Zhang, and R. Li, "Dependence of spectrum on pump-signal angle in BBO-I noncollinear optical-parametric chirped-pulse amplification," Appl. Phys. B:73, 219-222 (2001).
    [CrossRef]
  3. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
    [CrossRef]
  4. I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, C. Le Blanc, "Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4," Opt. Lett. 30, 1036-1038 (2005).
    [CrossRef] [PubMed]
  5. S. Witte, R. Th. Zinkstok, W. Hogervorst, K. S. E. Eikema, "Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification," Opt. Express 13, 4903-4908 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4903">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4903</a>
    [CrossRef] [PubMed]
  6. T. J. Driscoll, G. M. Gale, and F. Hache, "Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator," Opt. Commun. 110, 638-644 (1994).
    [CrossRef]
  7. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, "Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator," Opt. Lett. 20, 1562-1564 (1995).
    [CrossRef] [PubMed]
  8. G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
    [CrossRef]
  9. N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuška, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, A. Piskarskas, "Multimillijoule chirped parametric amplification of few-cycle pulses," Opt. Lett. 30, 562-567 (2005).
    [CrossRef]
  10. T. Harimoto and K. Yamakawa, "Numerical analysis of optical parametric chirped pulse amplification with time delay," Opt. Express 11, 939-943 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-939">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-939</a>
    [CrossRef] [PubMed]
  11. I. Jovanovic, C. A. Ebbers, C. P. J. Barty, "Hybrid chirped-pulse amplification," Opt. Lett. 27, 1622-1624 (2002).
    [CrossRef]
  12. R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
    [CrossRef]
  13. Y. Stepanenko and Cz. Radzewicz, "High-gain multipass noncollinear optical parametric chirped pulse amplifier," Appl. Phys. Lett. 86, 211120-211123 (2005).
    [CrossRef]
  14. S. Backus, J. Peatross, C. P. Huang, M. M. Murnane, H. C. Kapteyn, "Ti:sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz," Opt. Lett. 20, 2000-2002 (1995).
    [CrossRef] [PubMed]

Appl. Phys. B (2)

X. Yang, Z. Xu, Z. Zhang, Y. Leng, J. Peng, J. Wang, S. Jin, W. Zhang, and R. Li, "Dependence of spectrum on pump-signal angle in BBO-I noncollinear optical-parametric chirped-pulse amplification," Appl. Phys. B:73, 219-222 (2001).
[CrossRef]

R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Stepanenko and Cz. Radzewicz, "High-gain multipass noncollinear optical parametric chirped pulse amplifier," Appl. Phys. Lett. 86, 211120-211123 (2005).
[CrossRef]

Opt. Commun. (3)

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

A. Dubietis, G. Jonušauskas, and A. Piskarskas, "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal," Opt. Commun. 88, 437-440 (1992).
[CrossRef]

T. J. Driscoll, G. M. Gale, and F. Hache, "Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator," Opt. Commun. 110, 638-644 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Scheme of the multipass noncollinear optical parametric chirped pulse amplifier (multipass NOPCPA), M1–M8 are flat high damage threshold broadband dielectric mirrors highly reflective @ 800 nm, M9 is a flat metallic mirror, DG is a diffraction grating, PC is a Pockels cell, the distance between mirrors M3 and M8 is 200 mm, (b) beam alignment in the amplifier, the pump beam (not shown) aims at the center of the circle.

Fig. 2.
Fig. 2.

Experimental gain (right axis) and output energy (left axis) of the amplifier vs pump pulse energy (solid circles). The gain of an unsaturated amplifier fitted to the experimental data is shown by a dashed curve. Insets show the spectra of the output pulse for selected pump pulse energies.

Fig. 3.
Fig. 3.

Beam profile of the multipass NOPCPA output taken at a distance of 3 m and its vertical and horizontal cross-sections. Red curves are Gaussians fitted to the experimental data.

Fig. 4.
Fig. 4.

(a). FROG trace of the multipass NOPCPA compressed pulse, (b) retrieved (solid thick line) and experimental (solid thin line) spectra and retrieved phase (dashed line), (c) Fourier transform limited pulse (shaded profile) and retrieved (solid line) temporal pulse profiles.

Metrics