Abstract

Confocal and nonlinear optical microscopies have been applied for dermatological studies because of their capability to provide sub-surface three-dimensional images with sub-µm spatial resolutions. Optical signal degradation as the imaging plane being moved toward deeper regions in skin specimens is the key factor that limits the observation depth for the laser scanning based linear or nonlinear imaging modalities. In this article, we studied the signal degradation in fixed human skin specimens using reflection confocal microscopy and higher-harmonic optical microscopy based on a Cr:forsterite femtosecond laser centered at 1230-nm. By analyzing the optical properties through these linear and nonlinear imaging modalities, we found that the optical signal degradation in the studied human skin specimen is dominated by the distortion of the point spread function.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical biopsy of fixed human skin with backward-collected optical harmonics signals

Shih-Peng Tai, Tsung-Han Tsai, Wen-Jeng Lee, Dar-Bin Shieh, Yi-Hua Liao, Hsin-Yi Huang, Kenneth Y.-J. Zhang, Hsiang-Lin Liu, and Chi-Kuang Sun
Opt. Express 13(20) 8231-8242 (2005)

Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy

Yi-Hua Liao, Szu-Yu Chen, Sin-Yo Chou, Pei-Hsun Wang, Ming-Rung Tsai, and Chi-Kuang Sun
Biomed. Opt. Express 4(1) 77-88 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
    [Crossref] [PubMed]
  2. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherent tomography,” Opt. Lett. 27, 1803–1805 (2002).
    [Crossref]
  3. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, ”Submicron axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [Crossref]
  4. M. Minsky , Microscopy apparatus. U.S. Patent03013467 (1957).
  5. C. J. R. Sheppard and D. M. Shotton , Confocal Laser Scanning Microscopy (BIOS Scientific Publisher, Oxford, 1997).
  6. P. T. C. So, H. Kim, and I. E. Kochevar, “Two photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express 3, 339–350 (1998).
    [Crossref] [PubMed]
  7. B. R. Masters and P. T. C. So, “Confocal microscopy and multi-photon excitation microscopy of human skin in vivo,” Opt. Express 8, 2–10 (2001).
    [Crossref] [PubMed]
  8. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1325 (1997).
    [Crossref]
  9. C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
    [Crossref] [PubMed]
  10. S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231–8242 (2005).
    [Crossref] [PubMed]
  11. B. Selkin, M. Rajadhyaksha, S. González, and R. G. Langley RG, “In vivo confocal microscopy in dermatology,” Dermatol. Clin. 19369–77, ix–x (2001).
  12. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
    [Crossref] [PubMed]
  13. J. A. Veiro and P. G. Cummins, “Imaging of skin epidermis from various origins using confocal laser scanning microscopy,” Dermatology 189: 16–22 (1994).
    [Crossref] [PubMed]
  14. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  15. V. R. Daria, C. Saloma, and S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
    [Crossref]
  16. M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
    [Crossref]
  17. A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture pointspread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
    [Crossref]
  18. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
    [Crossref] [PubMed]
  19. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Bio. 147, 19–30 (2004).
    [Crossref]
  20. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, ”In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
    [Crossref] [PubMed]
  21. P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, Hoboken, 2003).
  22. S.-W. Chu, I-H. Chen, T.-M. Liu, P. C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909–1921 (2001).
    [Crossref]
  23. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999).
    [Crossref] [PubMed]
  24. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1999).
    [Crossref]
  25. P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
    [Crossref]
  26. S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
    [Crossref] [PubMed]
  27. H. Elias, J. E. Pauly, and E. R. Burns, Histology and Human Microanatomy, 4th Edition, Piccin Medical Books (Wiley, New York, 1978).
  28. M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
    [Crossref] [PubMed]
  29. S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47, 869–874 (2002).
    [Crossref] [PubMed]
  30. T. Yamashita, T. Kuwahara, S. González, and M. Takahashi, “Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy,” J. Invest. Dermotal. 124, 235–240 (2005).
    [Crossref]
  31. A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
    [Crossref]
  32. H. Beyer , Handbuch der Mikroskopie, 2nd Edition (VEB Verlag Technik, Berlin, 1985).
  33. J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
    [Crossref]
  34. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Comm. 196, 325–330 (2001).
    [Crossref]
  35. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C (Cambridge Univ. Press, Cambridge, 1992).

2005 (2)

T. Yamashita, T. Kuwahara, S. González, and M. Takahashi, “Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy,” J. Invest. Dermotal. 124, 235–240 (2005).
[Crossref]

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231–8242 (2005).
[Crossref] [PubMed]

2004 (1)

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Bio. 147, 19–30 (2004).
[Crossref]

2003 (2)

2002 (5)

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, ”Submicron axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherent tomography,” Opt. Lett. 27, 1803–1805 (2002).
[Crossref]

P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
[Crossref]

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47, 869–874 (2002).
[Crossref] [PubMed]

2001 (5)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
[Crossref]

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Comm. 196, 325–330 (2001).
[Crossref]

B. Selkin, M. Rajadhyaksha, S. González, and R. G. Langley RG, “In vivo confocal microscopy in dermatology,” Dermatol. Clin. 19369–77, ix–x (2001).

B. R. Masters and P. T. C. So, “Confocal microscopy and multi-photon excitation microscopy of human skin in vivo,” Opt. Express 8, 2–10 (2001).
[Crossref] [PubMed]

S.-W. Chu, I-H. Chen, T.-M. Liu, P. C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909–1921 (2001).
[Crossref]

2000 (2)

V. R. Daria, C. Saloma, and S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
[Crossref]

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[Crossref]

1999 (4)

A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture pointspread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1999).
[Crossref]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1325 (1997).
[Crossref]

1996 (1)

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
[Crossref]

1995 (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[Crossref] [PubMed]

1994 (1)

J. A. Veiro and P. G. Cummins, “Imaging of skin epidermis from various origins using confocal laser scanning microscopy,” Dermatology 189: 16–22 (1994).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

1985 (1)

H. Beyer , Handbuch der Mikroskopie, 2nd Edition (VEB Verlag Technik, Berlin, 1985).

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref] [PubMed]

Alfano, R. R.

Anderson, R. R.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[Crossref] [PubMed]

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref] [PubMed]

Apolonski, A.

Beyer, H.

H. Beyer , Handbuch der Mikroskopie, 2nd Edition (VEB Verlag Technik, Berlin, 1985).

Bizheva, K.

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Brakenhoff, G. J.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Burns, E. R.

H. Elias, J. E. Pauly, and E. R. Burns, Histology and Human Microanatomy, 4th Edition, Piccin Medical Books (Wiley, New York, 1978).

Campagnola, P. J.

P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
[Crossref]

Chen, C.-C.

Chen, I-H.

Chen, I-S.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

Chen, S.-Y.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Bio. 147, 19–30 (2004).
[Crossref]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, ”In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

Chen, Y.-C.

Cheng, P. C.

Cheng, P.-C.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

Chu, S.-W.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Bio. 147, 19–30 (2004).
[Crossref]

C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
[Crossref] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, ”In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

S.-W. Chu, I-H. Chen, T.-M. Liu, P. C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909–1921 (2001).
[Crossref]

Cummins, P. G.

J. A. Veiro and P. G. Cummins, “Imaging of skin epidermis from various origins using confocal laser scanning microscopy,” Dermatology 189: 16–22 (1994).
[Crossref] [PubMed]

Daria, V. R.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Drexler, W.

Dunn, A.

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
[Crossref]

Egner, A.

A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture pointspread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

Elias, H.

H. Elias, J. E. Pauly, and E. R. Burns, Histology and Human Microanatomy, 4th Edition, Piccin Medical Books (Wiley, New York, 1978).

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[Crossref] [PubMed]

Fercher, A. F.

Flannery, B.P.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C (Cambridge Univ. Press, Cambridge, 1992).

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Gan, X.

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[Crossref]

González, S.

T. Yamashita, T. Kuwahara, S. González, and M. Takahashi, “Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy,” J. Invest. Dermotal. 124, 235–240 (2005).
[Crossref]

S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47, 869–874 (2002).
[Crossref] [PubMed]

B. Selkin, M. Rajadhyaksha, S. González, and R. G. Langley RG, “In vivo confocal microscopy in dermatology,” Dermatol. Clin. 19369–77, ix–x (2001).

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[Crossref] [PubMed]

Gu, M.

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[Crossref]

Guo, Y.

Harris, D.

Hell, S.

A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture pointspread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

Hermann, B.

Ho, P. P.

Hoppe, P. E.

P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
[Crossref]

Huang, H.-Y.

Itoh, M.

Kawata, S.

Kim, H.

Kisteman, A.

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[Crossref]

Knight, J. C.

Kochevar, I. E.

Kuo, M.-X.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

Kuwahara, T.

T. Yamashita, T. Kuwahara, S. González, and M. Takahashi, “Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy,” J. Invest. Dermotal. 124, 235–240 (2005).
[Crossref]

Lee, S.-P.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

Lee, W.-J.

Liao, Y.-H.

Lin, B.-L.

Lin, C.-Y.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Bio. 147, 19–30 (2004).
[Crossref]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, ”In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

Lin, D.-J.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

Liu, F.

Liu, H.-L.

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231–8242 (2005).
[Crossref] [PubMed]

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

Liu, T.-M.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Bio. 147, 19–30 (2004).
[Crossref]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, ”In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

S.-W. Chu, I-H. Chen, T.-M. Liu, P. C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909–1921 (2001).
[Crossref]

Makita, S.

Malone, C. J.

P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
[Crossref]

Masters, B. R.

Mertz, J.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Comm. 196, 325–330 (2001).
[Crossref]

Millard, A. C

P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
[Crossref]

Minsky, M.

M. Minsky , Microscopy apparatus. U.S. Patent03013467 (1957).

Mohler, W. A.

P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
[Crossref]

Moreaux, L.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Comm. 196, 325–330 (2001).
[Crossref]

Muller, M.

Müller, M.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
[Crossref]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref] [PubMed]

Pauly, J. E.

H. Elias, J. E. Pauly, and E. R. Burns, Histology and Human Microanatomy, 4th Edition, Piccin Medical Books (Wiley, New York, 1978).

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Povazay, B.

Prasad, P. N.

P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, Hoboken, 2003).

Press, W.H.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C (Cambridge Univ. Press, Cambridge, 1992).

Rajadhyaksha, M.

B. Selkin, M. Rajadhyaksha, S. González, and R. G. Langley RG, “In vivo confocal microscopy in dermatology,” Dermatol. Clin. 19369–77, ix–x (2001).

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[Crossref] [PubMed]

RG, R. G. Langley

B. Selkin, M. Rajadhyaksha, S. González, and R. G. Langley RG, “In vivo confocal microscopy in dermatology,” Dermatol. Clin. 19369–77, ix–x (2001).

Richards-Kortum, R.

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
[Crossref]

Russell, P. St. J.

Sacks, P.

Saloma, C.

Sattmann, H.

Savage, H.

Schantz, S.

Scherzer, E.

Selkin, B.

B. Selkin, M. Rajadhyaksha, S. González, and R. G. Langley RG, “In vivo confocal microscopy in dermatology,” Dermatol. Clin. 19369–77, ix–x (2001).

Sheppard, C. J. R.

C. J. R. Sheppard and D. M. Shotton , Confocal Laser Scanning Microscopy (BIOS Scientific Publisher, Oxford, 1997).

Shieh, D.-B.

Shotton, D. M.

C. J. R. Sheppard and D. M. Shotton , Confocal Laser Scanning Microscopy (BIOS Scientific Publisher, Oxford, 1997).

Silberberg, Y.

So, P. T. C.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Squier, J.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
[Crossref]

Squier, J. A.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Sun, C.-K.

Sutoh, Y.

Tai, S.-P.

Takahashi, M.

T. Yamashita, T. Kuwahara, S. González, and M. Takahashi, “Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy,” J. Invest. Dermotal. 124, 235–240 (2005).
[Crossref]

Tannous, Z.

S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47, 869–874 (2002).
[Crossref] [PubMed]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
[Crossref]

Teukolsky, S.A.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C (Cambridge Univ. Press, Cambridge, 1992).

Tsai, H.-J.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Bio. 147, 19–30 (2004).
[Crossref]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, ”In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

Tsai, T.-H.

Unterhuber, A.

Veiro, J. A.

J. A. Veiro and P. G. Cummins, “Imaging of skin epidermis from various origins using confocal laser scanning microscopy,” Dermatology 189: 16–22 (1994).
[Crossref] [PubMed]

Vetterlein, M.

Vetterling, W.T.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C (Cambridge Univ. Press, Cambridge, 1992).

Wadsworth, W. J.

Webb, R. H.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Wilson, K. R.

Xu, M. G.

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[Crossref]

Yamashita, T.

T. Yamashita, T. Kuwahara, S. González, and M. Takahashi, “Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy,” J. Invest. Dermotal. 124, 235–240 (2005).
[Crossref]

Yasuno, Y.

Yatagai, T.

Yelin, D.

Zavislan, J. M.

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

Zhadin, N.

Zhang, K. Y.-J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77, 1551–1553 (2000).
[Crossref]

Biophy. J. (1)

P. J. Campagnola, A. C Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 81, 493–508 (2002).
[Crossref]

Dermatol. Clin. (1)

B. Selkin, M. Rajadhyaksha, S. González, and R. G. Langley RG, “In vivo confocal microscopy in dermatology,” Dermatol. Clin. 19369–77, ix–x (2001).

Dermatology (1)

J. A. Veiro and P. G. Cummins, “Imaging of skin epidermis from various origins using confocal laser scanning microscopy,” Dermatology 189: 16–22 (1994).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996).
[Crossref]

J. Am. Acad. Dermatol. (1)

S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47, 869–874 (2002).
[Crossref] [PubMed]

J. Invest. Dermatol. (3)

M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[Crossref] [PubMed]

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[Crossref] [PubMed]

J. Invest. Dermotal. (1)

T. Yamashita, T. Kuwahara, S. González, and M. Takahashi, “Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy,” J. Invest. Dermotal. 124, 235–240 (2005).
[Crossref]

J. Microsc. (2)

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear Bio-photonic Crystal Effects Revealed with Multi-modal Nonlinear Microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[Crossref] [PubMed]

A. Egner and S. Hell, “Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture pointspread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
[Crossref]

J. Struct. Bio. (1)

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Bio. 147, 19–30 (2004).
[Crossref]

Opt. Comm. (1)

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Comm. 196, 325–330 (2001).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
[Crossref]

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent coherent tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Other (6)

M. Minsky , Microscopy apparatus. U.S. Patent03013467 (1957).

C. J. R. Sheppard and D. M. Shotton , Confocal Laser Scanning Microscopy (BIOS Scientific Publisher, Oxford, 1997).

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C (Cambridge Univ. Press, Cambridge, 1992).

H. Beyer , Handbuch der Mikroskopie, 2nd Edition (VEB Verlag Technik, Berlin, 1985).

H. Elias, J. E. Pauly, and E. R. Burns, Histology and Human Microanatomy, 4th Edition, Piccin Medical Books (Wiley, New York, 1978).

P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, Hoboken, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Set up of the harmonic laser scanning microscope combining the reflection confocal with the higher-harmonic generation modalities. BF: barrier filter; BS: beamspliter; DB: dichroic beamsplitter; PMT: photomultiplier tube; GM: galvanometric mirrors; PD: photodetector; VIC: V-I converter circuit; PH: confocal pinhole.

Fig. 2.
Fig. 2.

Cross-sectional (a) RC, (b) THG, (c) SHG, and (d) combined images of human skin taken at a depth of 90-|j,m from the skin surface around the dermo-epidermal junction. Images size: 120×120μm.

Fig. 3.
Fig. 3.

Cross-sectional (a) RC, (b) THG, (c) SHG, and (d) combined images of human skin taken at a depth of 150-μm from the skin surface in the dermal layer. Images size: 120×120μm.

Fig. 4.
Fig. 4.

Lateral resolutions of RC (black square), SHG (red circle), and THG (green triangle) images versus depth in the studied human skin sample.

Fig. 5.
Fig. 5.

Focal diameter degradation with depth in the studied human skin sample derived from the lateral resolution of the RC (black square), SHG (red circle), and THG (green triangle) images respectively.

Fig. 6.
Fig. 6.

RC signal power (square) versus focal diameter degradation with different depths in the studied human skin sample. The black solid line is the best fit with a slope = -2.24 and the gray solid line is the slope = -2 fitting. Note that both axes are log-scaled.

Fig. 7.
Fig. 7.

THG signal power (square) versus focal diameter degradation with different depths in the studied human skin sample. The solid black line is the best fit with a slope = -4.5. The solid gray line is with a slope = -4. Note that both axes are log-scaled.

Tables (1)

Tables Icon

Table 1. Formula for the focal beam diameter and the resolutions of different imaging modalities.

Metrics