Abstract

Full-field optical coherence microscopy (FFOCM) is an interferometric technique for obtaining wide-field microscopic images deep within scattering biological samples. FFOCM has primarily been implemented in the 0.8 μm wavelength range with silicon-based cameras, which may limit penetration when imaging human tissue. In this paper, we demonstrate FFOCM at the wavelength range of 0.9 - 1.4 μm, where optical penetration into tissue is presumably greater owing to decreased scattering. Our FFOCM system, comprising a broadband spatially incoherent light source, a Linnik interferometer, and an InGaAs area scan camera, provided a detection sensitivity of 86 dB for a 2 sec imaging time and an axial resolution of 1.9 μm in water. Images of phantoms, tissue samples, and Xenopus Laevis embryos were obtained using InGaAs and silicon camera FFOCM systems, demonstrating enhanced imaging penetration at longer wavelengths.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  2. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004).
    [CrossRef] [PubMed]
  3. L. Vabre, A. Dubois, and A. C. Boccara, "Thermal-light full-field optical coherence tomography," Opt. Lett. 27, 530-532 (2002).
    [CrossRef]
  4. B. Laude, A. De Martino, B. Drevillon, L. Benattar, and L. Schwartz, "Full-field optical coherence tomography with thermal light," Appl. Opt. 41, 6637-6645 (2002).
    [CrossRef] [PubMed]
  5. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence tomography," Opt. Lett. 23, 244-246 (1998).
    [CrossRef]
  6. M. Akiba, K. P. Chan, and N. Tanno, "Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras," Opt. Lett. 28, 816-818 (2003).
    [CrossRef] [PubMed]
  7. L. Yu and M. K. Kim, "Full-color three-dimensional microscopy by wide-field optical coherence tomography," Opt. Express 12, 6632-6641 (2004).
    [CrossRef] [PubMed]
  8. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, "Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer," Appl. Opt. 44, 1387-1392 (2005).
    [CrossRef] [PubMed]
  9. G. Moneron, A. C. Boccara, and A. Dubois, "Stroboscopic ultrahigh-resolution full-filed optical coherence tomography," Opt. Lett. 30, 1351-1353 (2005).
    [CrossRef] [PubMed]
  10. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, C. Boccara, "In-vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography," Opt. Express 13, 6286-6295 (2005).
    [CrossRef] [PubMed]
  11. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
    [CrossRef]
  12. R. R. Anderson and J. A. Parrish, "The optics of human skin," J. Invest. Dermatol. 77, 13-19 (1981).
    [CrossRef] [PubMed]
  13. P. Parsa, S. L. Jacques, and N. S. Nishioka, "Optical properties of rat liver between 350 and 2200 nm," Appl. Opt. 28, 2325-2330 (1989).
    [CrossRef] [PubMed]
  14. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
    [CrossRef] [PubMed]
  15. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, "Wide-field optical coherence tomography: imaging of biological tissues," Appl. Opt. 41, 2059-2064 (2002).
    [CrossRef] [PubMed]
  16. G. S. Kino and S. C. Chin, "Mirau correlation microscope," Appl. Opt. 29, 3775-3783 (1990).
    [CrossRef] [PubMed]
  17. S. M. Bentzen, "Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function," Med. Phy. 10, 579-581 (1983).
    [CrossRef]
  18. D. J. Hall, J. C. Hebden, and D. T. Delpy, "Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media," Med. Phys. 24, 361-368 (1997).
    [CrossRef] [PubMed]
  19. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: A phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
    [CrossRef] [PubMed]
  20. H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers," Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]
  21. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 405-408 (2002).
    [CrossRef]

Appl. Opt. (8)

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002).
[CrossRef] [PubMed]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004).
[CrossRef] [PubMed]

B. Laude, A. De Martino, B. Drevillon, L. Benattar, and L. Schwartz, "Full-field optical coherence tomography with thermal light," Appl. Opt. 41, 6637-6645 (2002).
[CrossRef] [PubMed]

Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, "Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer," Appl. Opt. 44, 1387-1392 (2005).
[CrossRef] [PubMed]

P. Parsa, S. L. Jacques, and N. S. Nishioka, "Optical properties of rat liver between 350 and 2200 nm," Appl. Opt. 28, 2325-2330 (1989).
[CrossRef] [PubMed]

E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, "Wide-field optical coherence tomography: imaging of biological tissues," Appl. Opt. 41, 2059-2064 (2002).
[CrossRef] [PubMed]

G. S. Kino and S. C. Chin, "Mirau correlation microscope," Appl. Opt. 29, 3775-3783 (1990).
[CrossRef] [PubMed]

H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers," Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, "The optics of human skin," J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: A phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Med. Phy. (1)

S. M. Bentzen, "Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function," Med. Phy. 10, 579-581 (1983).
[CrossRef]

Med. Phys. (1)

D. J. Hall, J. C. Hebden, and D. T. Delpy, "Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media," Med. Phys. 24, 361-368 (1997).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun. 185, 57-64 (2000).
[CrossRef]

Opt. Express (2)

L. Yu and M. K. Kim, "Full-color three-dimensional microscopy by wide-field optical coherence tomography," Opt. Express 12, 6632-6641 (2004).
[CrossRef] [PubMed]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, C. Boccara, "In-vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography," Opt. Express 13, 6286-6295 (2005).
[CrossRef] [PubMed]

Opt. Lett. (5)

G. Moneron, A. C. Boccara, and A. Dubois, "Stroboscopic ultrahigh-resolution full-filed optical coherence tomography," Opt. Lett. 30, 1351-1353 (2005).
[CrossRef] [PubMed]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence tomography," Opt. Lett. 23, 244-246 (1998).
[CrossRef]

M. Akiba, K. P. Chan, and N. Tanno, "Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras," Opt. Lett. 28, 816-818 (2003).
[CrossRef] [PubMed]

L. Vabre, A. Dubois, and A. C. Boccara, "Thermal-light full-field optical coherence tomography," Opt. Lett. 27, 530-532 (2002).
[CrossRef]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 405-408 (2002).
[CrossRef]

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Supplementary Material (6)

» Media 1: AVI (2526 KB)     
» Media 2: AVI (14496 KB)     
» Media 3: AVI (2470 KB)     
» Media 4: AVI (5823 KB)     
» Media 5: AVI (2569 KB)     
» Media 6: AVI (9522 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. Xe, xenon arc lamp; ND, neutral density filter; BS, beam splitter cube; OL, microscope objective lens, GP, glass plate; DAQ, data acquisition board in computer.

Fig. 2.
Fig. 2.

(a) Measured optical spectrum at the detector and (b) point spread function of the FFOCM system.

Fig. 3.
Fig. 3.

FFOCM images acquired through 2.1 mm thick Intralipid solution. (a) and (b) are the images through 3 % Intralipid solution with the systems using Si camera and InGaAs camera, respectively. (c) and (d) are the images through 4 % Intralipid solution with Si camera system and InGaAs camera system, respectively [Media 1] [Media 2].

Fig. 4.
Fig. 4.

FFOCM images of head mesenchymal cells of the fixed Xenopus laevis embryo, ex vivo. (a) Movie of a series of en face images from ventral side (top) to dorsal side (bottom) (presented at 30 fps, smaller (compressed) version: 2.5 MB, larger (uncompressed) version: 15 MB). (b) Cross-sectional image acquired from 1640 en face tomographic images. Scale bar: 100 μm. [Media 3][Media 4]

Fig. 5.
Fig. 5.

(a) Cross-sectional FFOCM image of Xenopus laevis heart, ex vivo. V: ventricle, A: atrium, S: atrial septum, AV: atrio-ventricular valve. (b) Movie of a series of en face images of Xenopus eye (presented at 20 fps, smaller (compressed) version: 2.5 MB, larger (uncompressed) version: 5.8 MB). E: epithelium, RPE: retinal pigmented epithelium, NR: neural retina. Scale bar: 100 μm [Media 5] [Media 6].

Fig. 6.
Fig. 6.

Cross-sectional FFOCM images of swine small intestine, ex vivo, acquired (a) from InGaAs system and (b) from Si system. Detection sensitivity of both systems was set at the same value of 83 dB. (c) Movie of a series of en face images of swine small intestine from InGaAs

Fig. 7.
Fig. 7.

Cross-sectional FFOCM image of human thyroid tissue, ex vivo. F: follicles. Scale bar: 100 μm. system (presented at 20 fps, smaller (compressed) version: 2.6 MB, larger (uncompressed) version: 9.5 MB) . Scale bar: 100 μm.

Tables (1)

Tables Icon

Table 1. Sensitivity for different gain settings (M) of the InGaAs Camera. Rr = 2.5 %. Sample was a partial reflector with -57 dB reflectance (A gold-coated mirror with a neutral density filter).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR = 2 N R s R r ( R r + R inc ) 2 ξ max 2 ξ max + η 2 ,
S [ d B ] = 10 × log [ ( R r + R inc ) 2 M N R r ξ max ( 1 + M η 2 ξ max ) ] .

Metrics