Abstract

Group-IV phosphides are relatively unknown materials as compared to the Group-IV carbide. In this work, we detailed the first principles calculations of the electronic and optical properties of the pseudocubic M3P4 (M=Si, Ge, Sn) using the density function theory (DFT). Results are in good agreement with those previous works. Furthermore, the optical constants, such as the dielectric function, energy loss function and effective number of valence electrons are calculated and presented in the study.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. L. Cohen, "Predicting useful materials," Science 261, 307(1993).
    [CrossRef] [PubMed]
  2. J. L. He, L. C. Guo, D. L. Yu, R. P. Liu, Y. J. Tian, and H. T. Wang, "Hardness of cubic spinel Si3N4," Appl. Phys. Lett. 85, 5571(2004).
    [CrossRef]
  3. B. Molina and L. E. Sansores, "Electronic structure of Ge3N4 possible structures," Int. J. Quantum Chem. 80, 249 (2000).
    [CrossRef]
  4. A. T. L. Lim, Y. P. Feng, and J. C. Zheng, "Stability of hypothetical carbon phosphide solids," Int. J. Mod. Phys. B 16, 1101 (2002).
    [CrossRef]
  5. A. T. L. Lim, Y. P. Feng, and J. C. Zheng, "Interesting electronic and structural properties of C3P4," Mater. Sci. Eng. B 99, 527 (2003).
    [CrossRef]
  6. M. Huang, Y. P. Feng, A. T. L. Lim, and J. C. Zheng, "Structural and electronic properties of Si3P4," Phys. Rev. B 69, 054112 (2004).
    [CrossRef]
  7. M. Huang and Y. P. Feng, "Stability and electronic properties of Sn3P4," Phys. Rev. B 70, 184116 (2004)
    [CrossRef]
  8. M. Huang and Y. P. Feng, "Theoretical prediction of the structure and properties of Sn3N4," J. Appl. Phys. 96, 4015 (2004).
    [CrossRef]
  9. P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Phys. Rev. 136, B864 (1964).
    [CrossRef]
  10. W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 140, A1133 (1965).
    [CrossRef]
  11. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865 (1996).
    [CrossRef] [PubMed]
  12. M. Segall, P. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, and M. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys. Condens. Matter 14, 2717(2002).
    [CrossRef]
  13. M. S. Hybertsen and S. G. Louie, "Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies," Phys. Rev. B 34, 5390 (1986).
    [CrossRef]
  14. M. P. Surh, S. G. Louie, and M. L. Cohen, "Quasiparticle energies for cubic BN, BP, and BAs," Phys. Rev. B 43, 9126 (1991).
    [CrossRef]
  15. S. Saha, T. P. Sinha, and A. Mookerjee, "Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3," Phys. Rev. B 62, 8828 (2000).
    [CrossRef]

Appl. Phys. Lett. (1)

J. L. He, L. C. Guo, D. L. Yu, R. P. Liu, Y. J. Tian, and H. T. Wang, "Hardness of cubic spinel Si3N4," Appl. Phys. Lett. 85, 5571(2004).
[CrossRef]

Int. J. Mod. Phys. (1)

A. T. L. Lim, Y. P. Feng, and J. C. Zheng, "Stability of hypothetical carbon phosphide solids," Int. J. Mod. Phys. B 16, 1101 (2002).
[CrossRef]

Int. J. Quantum Chem. (1)

B. Molina and L. E. Sansores, "Electronic structure of Ge3N4 possible structures," Int. J. Quantum Chem. 80, 249 (2000).
[CrossRef]

J. Appl. Phys. (1)

M. Huang and Y. P. Feng, "Theoretical prediction of the structure and properties of Sn3N4," J. Appl. Phys. 96, 4015 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

M. Segall, P. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, and M. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys. Condens. Matter 14, 2717(2002).
[CrossRef]

Mater. Sci. Eng. B (1)

A. T. L. Lim, Y. P. Feng, and J. C. Zheng, "Interesting electronic and structural properties of C3P4," Mater. Sci. Eng. B 99, 527 (2003).
[CrossRef]

Phys. Rev. (2)

P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Phys. Rev. 136, B864 (1964).
[CrossRef]

W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 140, A1133 (1965).
[CrossRef]

Phys. Rev. B (5)

M. Huang, Y. P. Feng, A. T. L. Lim, and J. C. Zheng, "Structural and electronic properties of Si3P4," Phys. Rev. B 69, 054112 (2004).
[CrossRef]

M. Huang and Y. P. Feng, "Stability and electronic properties of Sn3P4," Phys. Rev. B 70, 184116 (2004)
[CrossRef]

M. S. Hybertsen and S. G. Louie, "Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies," Phys. Rev. B 34, 5390 (1986).
[CrossRef]

M. P. Surh, S. G. Louie, and M. L. Cohen, "Quasiparticle energies for cubic BN, BP, and BAs," Phys. Rev. B 43, 9126 (1991).
[CrossRef]

S. Saha, T. P. Sinha, and A. Mookerjee, "Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3," Phys. Rev. B 62, 8828 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865 (1996).
[CrossRef] [PubMed]

Science (1)

M. L. Cohen, "Predicting useful materials," Science 261, 307(1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Ball-stick model of pseudocubic-M3N4

Fig. 2.
Fig. 2.

Calculated band structure for pseudocubic-M3N4. (a) Si3P4, (b) Ge3P4 and (c) Sn3P4

Fig. 3.
Fig. 3.

Calculated total and partial density of states for pseudocubic- Si3P4

Fig. 4.
Fig. 4.

Dielectric functions (a) and energy-loss function (b) of M3N4

Fig.5.
Fig.5.

The calculated effective number of valence electrons (neff ) participating in the interband optical transitions of M3N4

Tables (1)

Tables Icon

Table 1 Calculated equilibrium structure parameters and properties of the pseudocubic M3N4

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε 2 ( ω ) = 8 π 2 e 2 ω 2 m 2 V c , v k c , k e ̂ p | v , k 2 δ ( E c ( k ) E v ( k ) ħ ω )
L ( ω ) = ε 2 ( ω ) ( ε 1 2 ( ω ) + ε 2 2 ( ω ) )
n eff ( ω m ) = 2 m ε 0 π e 2 0 ω m ω ε 2 ( ω )

Metrics