Abstract

We demonstrate a compact, fiber-pigtailed, 4-by-4 wavelength router in Silicon-on-insulator photonic wires, fabricated using CMOS processing methods. The core is an AWG with a 250GHz channel spacing and 1THz free spectral range, on a 425×155 μm2 footprint. The insertion loss of the AWG was reduced to 3.5dB by applying a two-step processing technique. The crosstalk is -12dB. The device was pigtailed using vertical fiber couplers and an eight-fiber array connector.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada and H. Morita,"Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres,"Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]
  2. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi and H. Morita,"Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  3. T. Fukazawa, F. Ohno and T. Baba,"Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
    [CrossRef]
  4. F. Ohno, T. Fukazawa and T. Baba,"Mach-Zehnder Interferometers Composed of Microbends and Microbranches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys. 44, 5322-5323 (2005).
    [CrossRef]
  5. D. Taillaert,W. Bogaerts, P. Bienstman, T.F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel and R. Baets,"An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
    [CrossRef]
  6. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman and D. Van Thourhout,"Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology," IEEE J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  7. C. Dragone,"An NxN Optical Multiplexer Using a Planar Arrangement of Two Star Couplers," IEEE Photonics Technol. Lett. 3, 812-815 (1991).
    [CrossRef]
  8. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, V. Wiaux, S. Beckx, J. Wouters and R. Baets,"Wavelength-selective components in SOI photonic wires fabricated with deep UV lithography," Group IV photonics 2004, WB5 (2004).
  9. P. Dumon, G. Roelkens, W. Bogaerts, D. Van Thourhout, J. Wouters, S. Beckx, P. Jaenen and R. Baets,"Basic Photonic Wire Components in Silicon-on-insulator," IEEE Group IV photonics 2005, 189-191 (2005).
    [CrossRef]
  10. D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets,"A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photonics Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  11. D. Taillaert, P. Bienstman and R. Baets, "Compact efficient broadband grating for silicon-on-insulator waveguides," Opt . Lett. 29, 2749-2751 (2004).
    [CrossRef] [PubMed]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada and H. Morita,"Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres,"Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Group IV photonics 2004 (1)

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, V. Wiaux, S. Beckx, J. Wouters and R. Baets,"Wavelength-selective components in SOI photonic wires fabricated with deep UV lithography," Group IV photonics 2004, WB5 (2004).

IEEE Group IV photonics 2005, (1)

P. Dumon, G. Roelkens, W. Bogaerts, D. Van Thourhout, J. Wouters, S. Beckx, P. Jaenen and R. Baets,"Basic Photonic Wire Components in Silicon-on-insulator," IEEE Group IV photonics 2005, 189-191 (2005).
[CrossRef]

IEEE J. Lightwave Technol (1)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman and D. Van Thourhout,"Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology," IEEE J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert,W. Bogaerts, P. Bienstman, T.F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel and R. Baets,"An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi and H. Morita,"Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue and R. Baets,"A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photonics Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

C. Dragone,"An NxN Optical Multiplexer Using a Planar Arrangement of Two Star Couplers," IEEE Photonics Technol. Lett. 3, 812-815 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Fukazawa, F. Ohno and T. Baba,"Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004).
[CrossRef]

F. Ohno, T. Fukazawa and T. Baba,"Mach-Zehnder Interferometers Composed of Microbends and Microbranches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys. 44, 5322-5323 (2005).
[CrossRef]

Opt . Lett. (1)

D. Taillaert, P. Bienstman and R. Baets, "Compact efficient broadband grating for silicon-on-insulator waveguides," Opt . Lett. 29, 2749-2751 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Star coupler (a) Schematic of the deep to shallow transition (b) SEM picture (c) Detailed SEM picture of the two-level structures

Fig. 2.
Fig. 2.

(a) AWG and its designed parameters. (b) chip layout of the AWG with access waveguides and fiber couplers (numbered 1 to 8). (c) fiber coupler setup principle and SEM picture of the grating coupler.

Fig. 3.
Fig. 3.

Pigtailed chip. (a) Schematic (b) Picture. here the chip was cleaved larger than necessary. The actual die size is smaller than the connector surface.

Fig. 4.
Fig. 4.

Overlayed normalized fiber-to-fiber transmission spectra of a 250GHz channel spacing AWG. Spectra from the each input to all outputs are shown

Metrics