Abstract

The photosensitive properties of a centrosymmetric gadolinium gallium garnet crystal doped with calcium are investigated at room temperature. Elementary holograms can be recorded over a wide range of wavelengths in the visible spectral range. The photosensitive properties are studied experimentally using beam coupling and angular response experiments. Mixed absorption and refractive-index gratings are observed and their amplitudes and relative phases determined. Moreover, the candidate centers that are responsible for the photorefractive effect are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Antos, M. Pardavi-Horvath, A. Cziraki, J. Fidler, and P. Skalicky, "Microstructure of Yttrium iron garnet thin films and of Gadolinium Gallium garnet single crystals," J. Cryst. Growth 94, 197-02 (1989).
    [CrossRef]
  2. A. S. Yurov, A. N. Karpov, V. K. Raev, G. E. Khodenkov, and M. P. Shorygin, "Displacement of a magnetic bubble by a Rayleigh surface wave in an iron garnet film containing bismuth," Tech. Phys. Lett. 12, 83-4 (1986).
  3. R. Wolfe, "Thin films for non-reciprocal magneto-optic devices," Thin Solid Films 216, 184-8 (1992).
    [CrossRef]
  4. C. S. Tsai, "Wideband tunable microwave devices using ferromagnetic film-gallium arsenide material structures," J. Magn. Magn. Mater. 209, 10-14 (2000).
    [CrossRef]
  5. S. Yamamoto and T. Makimoto, "Design considerations for nonreciprocal integrated optical devices," J. Appl. Phys. 47, 4056-60 (1976).
    [CrossRef]
  6. E. Zharikov, N. Il'ichev, V. Laptev, A. Malyutin, V. Ostroumov, P. Pashinin, and I. Shcherbakov, "Sensitization of neodymium ion luminescence by chromium ions in a Gd3Ga5O12 crystal," Sov. J. Quantum Electron. 12, 338-41 (1982).
    [CrossRef]
  7. J. Marion, "Strengthened solid-state laser materials," Appl. Phys. Lett. 47, 694-6 (1985).
    [CrossRef]
  8. A. A. Danilov, E. Y. Nikirui, V. V. Osiko, V. G. Polushkin, S. N. Sorokin, and M. I. Timoshechkin, "Efficient laser with a rectangular active element," Sov. J. Quantum Electron. 21, 264-6 (1991).
    [CrossRef]
  9. H. Brusset, H. Giller-Prandraud, and J. L. Bordot, "Investigations on Gallates of rare earth metals and of Yttrium," B. Soc. Chim. Fr. 4, 1206 (1967).
  10. J. Dong and K. Lu, "Noncubic symmetry in garnet structures studied using extended x-ray-absorption finestructure spectra," Phys. Rev. B 43, 8808 (1991).
    [CrossRef]
  11. G. J. Pogatshnik, L. S. Cain, Y. Chen, and B. D. Evans, "Optical properties of color centers in calcium-stabilized Gadolinium Gallium Garnets," Phys. Rev. B 43, 1787-94 (1991).
    [CrossRef]
  12. R. Metselaar, J. P.M. Damen, P. K. Larsen, and M. A. H. Huyberts, "Investigation of colour centres in Gadolinium Gallium Garnet Crystals," Phys. Status Solidi (a) 34, 665-70 (1976).
    [CrossRef]
  13. A. O. Matkovskii, D. Y. Sugak, S. B. Ubizskii, U. A. Ulmanis, and A. P. Shakhov, "Radiation-stimulated processes in Gadolinium Gallium Garnet single crystals," Phys. Status Solidi (a) 128, 21-29 (1991).
    [CrossRef]
  14. A. Matkovskii, P. Potera, D. Sugak, L. Grigorjeva, D. Millers, V. Pankratov, and A. Suchocki, "Stable and transient color centers in Gd3Ga5O12 crystals," Cryst. Res. Technol. 39, 788-795 (2004).
    [CrossRef]
  15. G. C. Valley and J. F. Lam, Theory of photorefractive effects in Electro-optic Crystals, Topics in Applied Physics, 61 (Springer-Verlag, Berlin, 1988), chap. 3, 75-98.
  16. R. Hofmeister, A. Yariv, S. Yagi, and A. Agranat, "New photorefractive mechanism in Centrosymmetric Crystals:a strain-coordinated Jahn-Teller relaxation," Phys. Rev. Lett. 69, 1459-62 (1992).
    [CrossRef] [PubMed]
  17. B. Sugg, H. Nürge, B. Faust, E. Ruza, R. Niehüser, H. J. Reyher, R. A. Rupp, and L. Ackermann, "The photorefractive effect in Terbium Gallium Garnet," Opt. Mat. 4, 343-7 (1995).
    [CrossRef]
  18. I. Redmond, R. Linke, E. Chuang, and D. Psaltis, "Holographic data storage in a DX-center material," Opt. Lett. 22, 1189-91 (1997).
    [CrossRef] [PubMed]
  19. M. Imlau, S. Haussühl, T.Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, "Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO] •2H2O: a new photorefractive effect," Appl Phys. B 68, 877-85 (1999).
    [CrossRef]
  20. B. Crosignani, A. Degasperis, E. DelRe, P. Di-Porto, and A. J. Agranat, "Nonlinear optical diffraction effects and solitons due to anisotropic charge-diffusion-based self-interaction," Phys. Rev. Lett. 82, 1664-7 (1999).
    [CrossRef]
  21. A. E. Krumins, R. A. Rupp, and J. A. Seglins, "Hologram recording in PLZT ceramics in the vicinity of its diffused phase transition," Ferroelectrics 107, 53-8 (1990).
    [CrossRef]
  22. R. MacDonald, R. Linke, J. Chadi, T. Thio, G. Devlin, and P. Becla, "Thick plasma gratings using a local photorefractive effect in CdZnTe:In," Opt. Lett. 19, 2131-3 (1994).
    [CrossRef] [PubMed]
  23. M. Imlau, T. Woike, R. Schieder, and R. A. Rupp, "Holographic scattering in Centrosymmetric Na2[Fe(CN)5NO] •2H2O," Phys. Rev. Lett. 82, 2860-3 (1999).
    [CrossRef]
  24. M. Pardavi-Horvath, J. Paitz, I. Földvari, I. Fellegvari, and L. Gosztonyi, "Spectroscopic properties of Ca2+ doped GGG," Phys. Status Solidi (a) 84, 540-2 (1984).
    [CrossRef]
  25. M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and T.Woike, "Specific recording kinetics as a general property of unconventional photorefractive media," Phys. Rev. Lett. 93(24), 243903 (2004).
    [CrossRef]
  26. D. L. Wood and K. Nassau, "Optical properties of Gadolinium Gallium Garnet," Appl. Opt. 29, 3704-7 (1990).
    [CrossRef] [PubMed]
  27. M. Pardavi-Horvath and M. Osvay, "Thermoluminescent properties of Gadolinium Gallium Garnet Crystals containing Ca2+ impurity," Phys. Status Solidi (a) 80, K183-5 (1983).
    [CrossRef]
  28. A. Matkovskii, D. Sugak, S. Ubizskii, and I. Kityk, "Spectroscopy and radiation defects of the Gd3Ga5O12 single crystals," Opto-Electron. Rev. 3, 41-53 (1995).
  29. E. Guibelalde, "Coupled wave analysis for out-of-phase mixed thick hologram gratings," Opt. Quantum Electron. 16, 173 (1984).
    [CrossRef]
  30. V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, "Dynamic self-diffraction of coherent light beams," Sov. Phys. Usp. 22, 742-756 (1979).
    [CrossRef]
  31. F. Kahmann, "Separate and simultaneous investigation of absorption gratings and refractive-index gratings by beam-coupling analysis," J. Opt. Soc. Am. A 10, 1562-9 (1993).
    [CrossRef]
  32. C. Neipp, I. Pascual, and A. Beléndez, "Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms," Opt. Express 10, 1374-83 (2002), <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1374> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1374</a>.
    [PubMed]

. Opt. Soc. Am. A

F. Kahmann, "Separate and simultaneous investigation of absorption gratings and refractive-index gratings by beam-coupling analysis," J. Opt. Soc. Am. A 10, 1562-9 (1993).
[CrossRef]

Appl Phys. B

M. Imlau, S. Haussühl, T.Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, "Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO] •2H2O: a new photorefractive effect," Appl Phys. B 68, 877-85 (1999).
[CrossRef]

Appl. Opt.

D. L. Wood and K. Nassau, "Optical properties of Gadolinium Gallium Garnet," Appl. Opt. 29, 3704-7 (1990).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Marion, "Strengthened solid-state laser materials," Appl. Phys. Lett. 47, 694-6 (1985).
[CrossRef]

B. Soc. Chim. Fr

H. Brusset, H. Giller-Prandraud, and J. L. Bordot, "Investigations on Gallates of rare earth metals and of Yttrium," B. Soc. Chim. Fr. 4, 1206 (1967).

Cryst. Res. Technol.

A. Matkovskii, P. Potera, D. Sugak, L. Grigorjeva, D. Millers, V. Pankratov, and A. Suchocki, "Stable and transient color centers in Gd3Ga5O12 crystals," Cryst. Res. Technol. 39, 788-795 (2004).
[CrossRef]

Ferroelectrics

A. E. Krumins, R. A. Rupp, and J. A. Seglins, "Hologram recording in PLZT ceramics in the vicinity of its diffused phase transition," Ferroelectrics 107, 53-8 (1990).
[CrossRef]

J. Appl. Phys.

S. Yamamoto and T. Makimoto, "Design considerations for nonreciprocal integrated optical devices," J. Appl. Phys. 47, 4056-60 (1976).
[CrossRef]

J. Cryst. Growth

L. Antos, M. Pardavi-Horvath, A. Cziraki, J. Fidler, and P. Skalicky, "Microstructure of Yttrium iron garnet thin films and of Gadolinium Gallium garnet single crystals," J. Cryst. Growth 94, 197-02 (1989).
[CrossRef]

J. Magn. Magn. Mater.

C. S. Tsai, "Wideband tunable microwave devices using ferromagnetic film-gallium arsenide material structures," J. Magn. Magn. Mater. 209, 10-14 (2000).
[CrossRef]

Opt. Express

C. Neipp, I. Pascual, and A. Beléndez, "Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms," Opt. Express 10, 1374-83 (2002), <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1374> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1374</a>.
[PubMed]

Opt. Lett.

R. MacDonald, R. Linke, J. Chadi, T. Thio, G. Devlin, and P. Becla, "Thick plasma gratings using a local photorefractive effect in CdZnTe:In," Opt. Lett. 19, 2131-3 (1994).
[CrossRef] [PubMed]

I. Redmond, R. Linke, E. Chuang, and D. Psaltis, "Holographic data storage in a DX-center material," Opt. Lett. 22, 1189-91 (1997).
[CrossRef] [PubMed]

Opt. Mat.

B. Sugg, H. Nürge, B. Faust, E. Ruza, R. Niehüser, H. J. Reyher, R. A. Rupp, and L. Ackermann, "The photorefractive effect in Terbium Gallium Garnet," Opt. Mat. 4, 343-7 (1995).
[CrossRef]

Opt. Quantum Electron.

E. Guibelalde, "Coupled wave analysis for out-of-phase mixed thick hologram gratings," Opt. Quantum Electron. 16, 173 (1984).
[CrossRef]

Opto-Electron. Rev.

A. Matkovskii, D. Sugak, S. Ubizskii, and I. Kityk, "Spectroscopy and radiation defects of the Gd3Ga5O12 single crystals," Opto-Electron. Rev. 3, 41-53 (1995).

Phys. Rev. B

J. Dong and K. Lu, "Noncubic symmetry in garnet structures studied using extended x-ray-absorption finestructure spectra," Phys. Rev. B 43, 8808 (1991).
[CrossRef]

G. J. Pogatshnik, L. S. Cain, Y. Chen, and B. D. Evans, "Optical properties of color centers in calcium-stabilized Gadolinium Gallium Garnets," Phys. Rev. B 43, 1787-94 (1991).
[CrossRef]

Phys. Rev. Lett.

R. Hofmeister, A. Yariv, S. Yagi, and A. Agranat, "New photorefractive mechanism in Centrosymmetric Crystals:a strain-coordinated Jahn-Teller relaxation," Phys. Rev. Lett. 69, 1459-62 (1992).
[CrossRef] [PubMed]

M. Fally, M. Imlau, R. A. Rupp, M. A. Ellabban, and T.Woike, "Specific recording kinetics as a general property of unconventional photorefractive media," Phys. Rev. Lett. 93(24), 243903 (2004).
[CrossRef]

M. Imlau, T. Woike, R. Schieder, and R. A. Rupp, "Holographic scattering in Centrosymmetric Na2[Fe(CN)5NO] •2H2O," Phys. Rev. Lett. 82, 2860-3 (1999).
[CrossRef]

B. Crosignani, A. Degasperis, E. DelRe, P. Di-Porto, and A. J. Agranat, "Nonlinear optical diffraction effects and solitons due to anisotropic charge-diffusion-based self-interaction," Phys. Rev. Lett. 82, 1664-7 (1999).
[CrossRef]

Phys. Status Solidi

M. Pardavi-Horvath, J. Paitz, I. Földvari, I. Fellegvari, and L. Gosztonyi, "Spectroscopic properties of Ca2+ doped GGG," Phys. Status Solidi (a) 84, 540-2 (1984).
[CrossRef]

Phys. Status Solidi (a)

M. Pardavi-Horvath and M. Osvay, "Thermoluminescent properties of Gadolinium Gallium Garnet Crystals containing Ca2+ impurity," Phys. Status Solidi (a) 80, K183-5 (1983).
[CrossRef]

R. Metselaar, J. P.M. Damen, P. K. Larsen, and M. A. H. Huyberts, "Investigation of colour centres in Gadolinium Gallium Garnet Crystals," Phys. Status Solidi (a) 34, 665-70 (1976).
[CrossRef]

A. O. Matkovskii, D. Y. Sugak, S. B. Ubizskii, U. A. Ulmanis, and A. P. Shakhov, "Radiation-stimulated processes in Gadolinium Gallium Garnet single crystals," Phys. Status Solidi (a) 128, 21-29 (1991).
[CrossRef]

Sov. J. Quantum Electron.

E. Zharikov, N. Il'ichev, V. Laptev, A. Malyutin, V. Ostroumov, P. Pashinin, and I. Shcherbakov, "Sensitization of neodymium ion luminescence by chromium ions in a Gd3Ga5O12 crystal," Sov. J. Quantum Electron. 12, 338-41 (1982).
[CrossRef]

A. A. Danilov, E. Y. Nikirui, V. V. Osiko, V. G. Polushkin, S. N. Sorokin, and M. I. Timoshechkin, "Efficient laser with a rectangular active element," Sov. J. Quantum Electron. 21, 264-6 (1991).
[CrossRef]

Sov. Phys. Usp.

V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, and M. S. Soskin, "Dynamic self-diffraction of coherent light beams," Sov. Phys. Usp. 22, 742-756 (1979).
[CrossRef]

Tech. Phys. Lett.

A. S. Yurov, A. N. Karpov, V. K. Raev, G. E. Khodenkov, and M. P. Shorygin, "Displacement of a magnetic bubble by a Rayleigh surface wave in an iron garnet film containing bismuth," Tech. Phys. Lett. 12, 83-4 (1986).

Thin Solid Films

R. Wolfe, "Thin films for non-reciprocal magneto-optic devices," Thin Solid Films 216, 184-8 (1992).
[CrossRef]

Topics in Applied Physics

G. C. Valley and J. F. Lam, Theory of photorefractive effects in Electro-optic Crystals, Topics in Applied Physics, 61 (Springer-Verlag, Berlin, 1988), chap. 3, 75-98.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental setups for recording gratings, performing rocking curves and beam-coupling experiments.

Fig. 2.
Fig. 2.

Absorption spectra of as-grown pure and calcium doped single crystals of GGG at room temperature. Inset: difference δαd = αdoped - αpure of the absorption coefficient between the doped and the pure GGG sample as a function of wavelength.

Fig. 3.
Fig. 3.

Spectral dependence of the absorption coefficient of a GGG:Ca crystal illuminated with UV, visible light and after a heat treatment (a). The inset shows photographs of the sample in the bleached and the colored state, respectively. The absorption difference spectra (b) are obtained by subtraction of the spectrum for the heat-treated reference sample.

Fig. 4.
Fig. 4.

Kinetics of the diffraction efficiency η R of the R-beam during recording an elementary grating at room temperature for two different wavelengths λw =458 and 514 nm (left scale). The light-induced change of the mean absorption coefficient α 0 is also shown (right scale).

Fig. 5.
Fig. 5.

Angular dependence of the ±1st order diffraction efficiency η R,S around the Bragg incidence. The grating was recorded and read out at λw = λr = 458 nm.

Fig. 6.
Fig. 6.

Beam coupling analysis with an external displacement of the recorded elementary hologram along its grating vector. λw = λr = 458 nm. The grating spacing Λ is indicated. Note, that the intensities of the coupled beams are dephased.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η R , S = ( n 1 π λ ) 2 + ( α 1 2 ) 2 ± n 1 πα 1 λ sin ( Δ φ ) X 2 + Y 2 [ sin 2 ( Xd ) + sinh 2 ( Yd ) ] .
η R η S = ( n 1 π λ ) 2 + ( α 1 2 ) 2 + n 1 πα 1 λ sin ( Δ φ ) ( n 1 π λ ) 2 + ( α 1 2 ) 2 n 1 πα 1 λ sin ( Δ φ ) .
a R : = A R 2 R ̂ + R ̂ + * + A S 2 S ̂ S ̂ * a S : = A S 2 R ̂ + R ̂ + * + A R 2 S ̂ S ̂ *
b R : = 2 A R A S { R ̂ + * S ̂ e i Φ } b S : = 2 A R A S { R ̂ * S ̂ + * e i Φ }
c R : = 2 A R A S { R ̂ + * S ̂ ie i Φ } c S : = 2 A R A S { R ̂ - S ̂ + * ie i Φ } .

Metrics