Abstract

A tunable, gain-clamped (GC) double-pass Erbium-doped fiber amplifier (EDFA) with a linear laser-cavity configuration has been demonstrated. It solves the problems existing in the conventional linear-cavity GC-EDFA based on two fiber Bragg gratings (FBGs), in which the clamped-gain is very difficult to be tuned. In the new GC-EDFA, the lasing oscillation for clamping the gain is produced in a linear cavity comprised by a FBG and a fiber reflection mirror (FRM). Between them, a filter filters out the lasing light, and then a variable optical attenuator changes the loss of the laser cavity for tuning the clamped-gain. Meanwhile, the double-pass configuration is used to enhance the gain efficiency, and therefore the level of the clamped-gain is greatly improved.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, "Field demonstration of over 1000 channel DWDM transmission with super-continuum multi-carrier source," Electron. Lett. 41, 270-271 (2005).
    [CrossRef]
  2. L. L. Yi, L. Zhan, Q. H. Ye, X. Hu, and Y. X. Xia, "Gain-clamped Erbium-doped fiber-ring lasing amplifier with low noise figure by using an interleaver," IEEE Photon. Technol. Lett. 15, 1695-1697(2003).
    [CrossRef]
  3. M. Cai, X. Liu, J. Cui, P. Tang, D. Liu, and J. Peng, "Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier," IEEE Photon. Technol. Lett. 9, 1093-1095(1997).
    [CrossRef]
  4. Shih Hsu, Tsair-Chun Liang, and Yung-Kuang Chen, "Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier," Opt. Commun. 196, 149-157 (2001).
    [CrossRef]
  5. E. Delevaque , T. Georges , J. F. Bayon , M. Monerie, P. Niay, and P. Bernage, "Gain control in erbium-doped fibre amplifiers by lasing at 1480nm with photo induced Bragg gratings written on fibre ends," Electron. Lett. 29, 1112-1114 (1993).
    [CrossRef]
  6. Seong Yun Ko, Myong Wook Kim, Dong Hwan Kim, Sang Hyuch Kim, Jae Cheol Jo and Jung Ho Park, "Gain control in erbium-doped fibre amplifiers by tuning center wavelength of a fibre Bragg grating constituting resonant cavity," Electron. Lett. 34, 990-991 (1998).
    [CrossRef]
  7. J. Bryce, G. Yoffe, Y. Zhao and R. Minasian, "Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating," Electron. Lett. 34, 1680-1681 (1998).
    [CrossRef]
  8. S. W. Harun, P. Poopalan, and H. Ahmad, "Gain enhancement in L-band EDFA through a double-pass technique," IEEE Photon. Technol. Lett. 14, 296-297 (2002).
    [CrossRef]
  9. L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
    [CrossRef]
  10. Zexuan Qiang, Xiang Wu, Sailing He, and Zukang Lu, "The global analysis for an all-optical gain-clamped L-band erbium-doped fiber amplifier using a single fiber Bragg grating," Opt. Commun. 224, 73-80 (2003).
    [CrossRef]

Electron. Lett. (4)

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, "Field demonstration of over 1000 channel DWDM transmission with super-continuum multi-carrier source," Electron. Lett. 41, 270-271 (2005).
[CrossRef]

E. Delevaque , T. Georges , J. F. Bayon , M. Monerie, P. Niay, and P. Bernage, "Gain control in erbium-doped fibre amplifiers by lasing at 1480nm with photo induced Bragg gratings written on fibre ends," Electron. Lett. 29, 1112-1114 (1993).
[CrossRef]

Seong Yun Ko, Myong Wook Kim, Dong Hwan Kim, Sang Hyuch Kim, Jae Cheol Jo and Jung Ho Park, "Gain control in erbium-doped fibre amplifiers by tuning center wavelength of a fibre Bragg grating constituting resonant cavity," Electron. Lett. 34, 990-991 (1998).
[CrossRef]

J. Bryce, G. Yoffe, Y. Zhao and R. Minasian, "Tunable, gain-clamped EDFA incorporating chirped fibre Bragg grating," Electron. Lett. 34, 1680-1681 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. W. Harun, P. Poopalan, and H. Ahmad, "Gain enhancement in L-band EDFA through a double-pass technique," IEEE Photon. Technol. Lett. 14, 296-297 (2002).
[CrossRef]

L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, "Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1005-1007 (2004).
[CrossRef]

L. L. Yi, L. Zhan, Q. H. Ye, X. Hu, and Y. X. Xia, "Gain-clamped Erbium-doped fiber-ring lasing amplifier with low noise figure by using an interleaver," IEEE Photon. Technol. Lett. 15, 1695-1697(2003).
[CrossRef]

M. Cai, X. Liu, J. Cui, P. Tang, D. Liu, and J. Peng, "Study on noise characteristic of gain-clamped erbium-doped fiber-ring lasing amplifier," IEEE Photon. Technol. Lett. 9, 1093-1095(1997).
[CrossRef]

Opt. Commun. (2)

Shih Hsu, Tsair-Chun Liang, and Yung-Kuang Chen, "Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier," Opt. Commun. 196, 149-157 (2001).
[CrossRef]

Zexuan Qiang, Xiang Wu, Sailing He, and Zukang Lu, "The global analysis for an all-optical gain-clamped L-band erbium-doped fiber amplifier using a single fiber Bragg grating," Opt. Commun. 224, 73-80 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The schematic diagram of the suggested GC- EDFA.

Fig. 2.
Fig. 2.

Gain and NF versus input signal power at 1550 nm with different lasing cavity losses.

Fig. 3.
Fig. 3.

Gain against input signal wavelength at different cavity-losses. In the figure, the solid symbols and the hollow symbols represent the -22-dBm and -12-dBm input signal power respectively.

Fig. 4.
Fig. 4.

The output spectra at 1550-nm signal wavelength with 17-dB cavity-loss. (a) the input 1550-nm signal power is -10 dBm; (b) the input 1550-nm signal power is -2 dBm.

Metrics