Abstract

We have fabricated and tested superconducting single-photon detectors and demonstrated detection efficiencies of 57% at 1550-nm wavelength and 67% at 1064 nm. In addition to the peak detection efficiency, a median detection efficiency of 47.7% was measured over 132 devices at 1550 nm. These measurements were made at 1.8K, with each device biased to 97.5% of its critical current. The high detection efficiencies resulted from the addition of an optical cavity and anti-reflection coating to a nanowire photodetector, creating an integrated nanoelectrophotonic device with enhanced performance relative to the original device. Here, the testing apparatus and the fabrication process are presented. The detection efficiency of devices before and after the addition of optical elements is also reported.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
    [CrossRef]
  2. J. K. W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Goltsman, B. Voronov, R. Sobolewski, W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
    [CrossRef]
  3. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," <a href=http://arxiv.org/abs/physics/0510238>http://arxiv.org/abs/physics/0510238</a>.
  4. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803(R) (2005).
    [CrossRef]
  5. I. Milostnaya, A. Korneev, I. Rubtsova, V. Seleznev, O. Minaeva, G. Chulkova, G. Gol'tsam, W. Slysz, M. Wegrzecki, R. Lukasiewicz, J. Bar, M. Gorska, A. Pearlman, J. Kitaygorsky, A. Cross, and R. Sobolewski, "Superconducting single-photon detectors designed for operation at 1.55 µm," presented at 7th European Conference on Applied Superconductivity, Vienna, Austria, 11-15 Sept. 2005.
  6. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proc. IEEE International Conference Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, India, 1984) pp. 175-179.
  7. S. Somani, S. Kasapi, K. Wilsher, W. Lo, R. Sobolewski, and G. Gol'tsman, "New photon detector for device analysis: Superconducting single-photon detector based on a hot electron effect," J. Vac. Sci. Tech. B 19, 2766-9 (2001).
    [CrossRef]
  8. D. M. Boroson, R. S. Bondurant, and J. J. Scozzafava, "Overview of high rate deep space laser communications options," in Free-Space Laser Communication Technologies XVI, G. S. Mecherle, C. Y. Young, and J. S. Stryjewski, eds., Proc. SPIE 5338, 37-49 (2004).
    [CrossRef]
  9. J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Goltsman, and R. Sobolewski, "Response time characterization of NbN superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 180-183 (2003).
    [CrossRef]
  10. J. Kitaygorsky, J. Zhang, A. Verevkin, A. Sergeev, A. Korneev, V. Matvienko, P. Kouminov, K. Smirnov, B. Voronov, G. Goltsman, and R. Sobolewski, "Origin of dark counts in nanostructured NbN single-photon detectors," IEEE Trans. Appl. Supercond. 15, 545-548 (2005).
    [CrossRef]
  11. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang and K. K. Berggren, "781-Mbit/s photon-counting optical communications using a superconducting nanowire detector," Opt. Lett. (In press)
  12. A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15, 571-574 (2005).
    [CrossRef]
  13. M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 µm from a periodically poled lithium niobate parametric downconverter," J. Mod. Opt. 51, 1417-1432 (2004).
  14. Measurement made by J. A. Woollam Co., Inc.
  15. Mitsubishi Rayon America Inc. (2004), aquaSAVE Datasheet, [Online] Available: <a href= http://www.mrany.com>http://www.mrany.com</a>.
  16. Handbook of optical constants of solids, edited by Edward D. Palik, Academic Press, (1985).
  17. Handbook of optical constants of solids III, edited by Edward D. Palik, Academic Press, (1998).

. Vac. Sci. Tech. B (1)

S. Somani, S. Kasapi, K. Wilsher, W. Lo, R. Sobolewski, and G. Gol'tsman, "New photon detector for device analysis: Superconducting single-photon detector based on a hot electron effect," J. Vac. Sci. Tech. B 19, 2766-9 (2001).
[CrossRef]

7th European Conference on Applied Super (1)

I. Milostnaya, A. Korneev, I. Rubtsova, V. Seleznev, O. Minaeva, G. Chulkova, G. Gol'tsam, W. Slysz, M. Wegrzecki, R. Lukasiewicz, J. Bar, M. Gorska, A. Pearlman, J. Kitaygorsky, A. Cross, and R. Sobolewski, "Superconducting single-photon detectors designed for operation at 1.55 µm," presented at 7th European Conference on Applied Superconductivity, Vienna, Austria, 11-15 Sept. 2005.

Appl. Phys. Lett. (1)

G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

IEEE Trans. Appl. Supercond. (4)

J. K. W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Goltsman, B. Voronov, R. Sobolewski, W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Goltsman, and R. Sobolewski, "Response time characterization of NbN superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 180-183 (2003).
[CrossRef]

J. Kitaygorsky, J. Zhang, A. Verevkin, A. Sergeev, A. Korneev, V. Matvienko, P. Kouminov, K. Smirnov, B. Voronov, G. Goltsman, and R. Sobolewski, "Origin of dark counts in nanostructured NbN single-photon detectors," IEEE Trans. Appl. Supercond. 15, 545-548 (2005).
[CrossRef]

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15, 571-574 (2005).
[CrossRef]

J. Mod. Opt. (1)

M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 µm from a periodically poled lithium niobate parametric downconverter," J. Mod. Opt. 51, 1417-1432 (2004).

Opt. Lett. (1)

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang and K. K. Berggren, "781-Mbit/s photon-counting optical communications using a superconducting nanowire detector," Opt. Lett. (In press)

Phys. Rev. A (1)

D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803(R) (2005).
[CrossRef]

Proc. IEEE International Conference Comp (1)

C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proc. IEEE International Conference Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, India, 1984) pp. 175-179.

Proc. SPIE (1)

D. M. Boroson, R. S. Bondurant, and J. J. Scozzafava, "Overview of high rate deep space laser communications options," in Free-Space Laser Communication Technologies XVI, G. S. Mecherle, C. Y. Young, and J. S. Stryjewski, eds., Proc. SPIE 5338, 37-49 (2004).
[CrossRef]

Other (5)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," <a href=http://arxiv.org/abs/physics/0510238>http://arxiv.org/abs/physics/0510238</a>.

Measurement made by J. A. Woollam Co., Inc.

Mitsubishi Rayon America Inc. (2004), aquaSAVE Datasheet, [Online] Available: <a href= http://www.mrany.com>http://www.mrany.com</a>.

Handbook of optical constants of solids, edited by Edward D. Palik, Academic Press, (1985).

Handbook of optical constants of solids III, edited by Edward D. Palik, Academic Press, (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic cross-section of photodetector (not to scale) integrated with an optical cavity and anti-reflection coating (ARC) to reduce loss of photons from reflection and transmission. The device was illuminated from the back of the chip through the ARC and sapphire substrate. Photons that were not absorbed in the NbN wire at first pass entered the optical cavity, thereby having many chances to get absorbed by the NbN. The cavity thickness was chosen so that destructive interference reduced the reflectance from the NbN surface. (b) Transmission electron micrograph of cross-section of fabricated device with optical cavity. The cavity shown here was fabricated for calibration purposes and was thicker than those used to increase the detection efficiency. (c) Optical micrograph showing top-down view of optical cavity on photodetector. The outline of the detector is visible underneath the Ti/Au mirror due to a 9-nm-high step where the mirror goes from the substrate to the detector.

Fig. 2.
Fig. 2.

Process flow for integration of optical cavity and anti-reflection coating (ARC) onto photodetector. (a) The process began with a fabricated photodetector [2]. Note the residual HSQ etch mask left on the NbN wires from the photodetector fabrication process. (b) HSQ was spin-coated to achieve an optical cavity thickness of 195 nm and then electron-beam patterned. (c) 1 nm of Ti and 120nm of Au were evaporated onto patterned photoresist followed by lift-off, leaving the mirror for the optical cavity. (d) Finally, 277 nm of HSQ was spin-coated on the back side of the wafer and hardened in an O2 plasma to form the ARC.

Fig. 3.
Fig. 3.

Schematic of the experimental setup with the optical components on the left connected by optical fiber and the electrical components on the right connected by coaxial cable. The fiber probe illuminated the sample through the back side of the sapphire substrate while the RF probe contacted the gold contact pads on top of the NbN.

Fig. 4.
Fig. 4.

Histogram of detection efficiencies for 132 tested devices on a chip measured (a) after initial fabrication of the bare photodetectors (b) after addition of the cavity structure and mirror on the devices and (c) after an anti-reflection coating was added to the back side of the sapphire substrate. Each measurement was made at 1.8K and at I = 0.975Ic .

Metrics